

VASCo 1.0
Manual

 Acknowledgments

Disclaimer

VASCo: Copyright © 2008, Institute of Molecular Biosciences, Karl-Franzens University
Graz (IMB-KFUG). All rights reserved. This software is provided "AS IS". IMB-KFUG
makes no warranties, express or implied, including no representation or warranty with
respect to the performance of the software and derivatives or their safety, effectiveness, or
commercial viability. IMB-KFUG does not warrant the merchantability or fitness of the
software and derivatives for any particular purpose, or that they may be exploited without
infringing the copyrights, patent rights or property rights of others. This software program
may not be sold, leased, transferred, exported or otherwise disclaimed to anyone, in whole
or in part, without the prior written consent of IMB-KFUG.

Credits

The VASCo software was written by Georg Steinkellner with scientific advice from Karl
Gruber and Christoph Kratky

This manual was written by Georg Steinkellner.

We would also like to thank Michel F. Sanner (MSMS) and Raquel Norel (DelPhi) for
allowing us to integrate and distribute there programs along with VASCo.

Manual Version: 2.2009 01 09

Karl-Franzens University Graz

Structural Biology
Institute of Molecular Biosciences
Humboldtstraße 50
8010 Graz
Austria

Phone: +43 (316) 380-1989
Fax: +43 (316) 380-9897
URL: http://strubi.uni-graz.at/

Graz University of Technology

Institute for Genomics and Bioinformatics
Petersgasse 14
8010 Graz
Austria

Phone: +43 (316) 873-5331
Fax: +43 (316) 873-5340
URL: http://genome.tugraz.at

 Table of Content

ACKNOWLEDGMENTS ..2
TABLE OF CONTENT..3
1 INTRODUCTION ...4
2 INSTALLATION ..4

2.1 WINDOWS...4
2.1.1 Package content ..4
2.1.2 Requirements...4
2.1.3 Setup..5

2.2 LINUX ...5
2.2.1 Package content ..5
2.2.2 Requirements...5
2.2.3 Setup..5

2.3 REMARKS ...6
3 USER GUIDE ..7

3.1 GETTING STARTED ..8
3.1.1 General..8
3.1.2 Testrun ..8
3.1.3 Example filename input:..9
3.1.4 Preparation of the PDB Files: ..9

3.1.4.1 Crystal contact calculation..9
3.1.4.2 Surface patch calculation..10
3.1.4.3 Unit allocation example:...10
3.1.4.4 Surface difference calculation ..11

3.1.5 Surface Property Calculation..13
3.1.5.1 surface points (MSMS)...13
3.1.5.2 hydrophobicity (HydroCalc)...13
3.1.5.3 electrostatic potential (DelPhi) ...14
3.1.5.4 patch point distance (PatchCalc) ..15

3.2 INPUT PARAMETERS:...17
3.3 OUTPUT: ...19

4 VISUALIZATION IN PYMOL..21
5 EXAMPLES...23

5.1 ADVANCED EXAMPLE ...23
6 REFERENCES ..26

VASCo manual

1 Introduction

VASCo is a program pipeline for the calculation of protein surface properties and the
visualization of annotated surfaces. Special emphasis is laid on protein-protein
interactions, which are calculated based on surface point distances. Molecular properties
such as electrostatic potential or hydrophobicity are mapped onto these surface points.
Molecular surfaces and the corresponding properties are calculated using existing well
established programs integrated into the package, as well as custom developed programs.
The modular pipeline can easily be extended to include new properties for annotation. The
output of the pipeline is most conveniently displayed in PyMOL [1] using a custom-made
plug-in.

2 Installation

The program is mainly written in Python. The modules include also programs and third
party software precompiled for different platforms. The software should run on unix based
platforms as well as on most windows environments. There are three main parts of the
software: The modules which have to be installed, the main program VASCo.py which
makes use of the modules and the visualization plug-in for viewing the results within
PyMOL.

2.1 Windows

The following steps will guide through the installation process of the windows distribution
of VASCo – Modules.

2.1.1 Package content

VASCo-Modules-x.win32.exe Vasco python modules
VASCo.py main program (command line)
install.pdf short installation guide
ppixplugin_vx.py visualization plug-in for PyMOL

(x stands for the version number)

2.1.2 Requirements

1. Python programming package version higher than 2.4.0. (available at
www.python.org)

2. PyMOL protein viewer. (available at http://pymol.sourceforge.net)

- 4 -

http://www.python.org/
http://pymol.sourceforge.net/

VASCo manual

2.1.3 Setup

This will install the modules into the python site-packages and the visualization plug-in into
the PyMOL program

1. Download and install Python version > 2.4.0
2. Download and install PyMOL
3. Execute VASCo-Modules-x.win32.exe
4. Select the Python distribution where you want to install the modules and follow

the on screen instructions
5. Run PyMOL and select “Plugin” -> “Install Plugin” at the drop down

menu and select the ppixplugin_vx.py. Restart PyMOL

2.2 Linux

The following steps will guide you through the installation process of the unix distribution of
VASCo –Modules.

2.2.1 Package content

VASCo-Modules-x.zip Vasco python modules
VASCo.py main program (command line)
install.pdf short installation guide
ppixplugin_vx.py visualization plug-in for PyMOL

(x stands for the version number)

2.2.2 Requirements

1. Python programming package version higher than 2.4.0. (available at
www.python.org)

2. PyMOL protein viewer. (available at http://pymol.sourceforge.net)

2.2.3 Setup

This will install the modules into the python site-packages and the visualization plug-in into
the PyMOL program

1. Download and install Python version > 2.4.0
2. Download and install PyMOL
3. Unzip VASCo-Modules-x.zip
4. within the unzipped directory VASCo-Modules-x type

python setup_vasco_x.py install

- 5 -

http://www.python.org/
http://pymol.sourceforge.net/

VASCo manual

5. Run PyMOL and select “Plugin” -> “Install Plugin” at the drop down
menu and select the ppixplugin_vx.py and restart PyMOL. Macintosh users
have to follow a different procedure1

2.3 Remarks

Write permission are needed for your Python installation path. If you do not have write
permissions please contact your administrator. If you still have permission problems you
can also copy the folder "ppix_modules" within the unzipped VASCo-Modules-x to
your working directory but the VASCo.py program has to be in the same directory as the
ppix_modules folder and the modules are not accessible from other python programs via
the import command. (This will also work for windows platforms using the linux
“ppix_modules” folder in VASCo-Modules-x.zip, if you encounter any installation problems
with the windows installation executable) The script runs different third party programs.
Therefore, at linux platforms the “PATH” variable has to be extended to "./" (current path)
within your .cshrc file (or other config file). e.g. set PATH = ('./' $PATH).

1 On Macintosh PyMOL has to be run with the X11/Hybrid mode to install external plug-ins.
(http://pymol.org/plugins.html) MacPyMOL for Tiger includes a hybrid X11 mode. Assuming that
X11 is already installed, simply duplicate MacPyMOL.app and rename it to
"PyMOLX11Hybrid.app". For further information see the PyMOL Wiki Forum
http://www.pymolwiki.org/index.php/MAC_Install

- 6 -

http://pymol.org/plugins.html
http://www.pymolwiki.org/index.php/MAC_Install

VASCo manual

3 User guide

The VASCo pipeline maps various properties onto calculated surface points of a protein. In
addition, it identifies contact patches between protein molecules based on a distance
cutoff, considering also symmetry equivalent molecules in a crystal. Thus, surface points
are separated into contact and non-contact areas allowing a separate analysis.

The program VASCo.py creates folders and files within your current working directory. The
minimum input is a PDB file and a file with standard run parameters (input.ppix)
located within your working directory. This file will be created automatically at the first run
of the program and contains already some standard input variables. The file can be used
to set standard parameters which can be overruled additionally by command line
parameters which can be set for each run separately.

Overview of the VASCo pipeline.

The chain, the unit and the partition sections are marked with corresponding colors (red for chain, yellow
for unit and green for partition sections). Gray boxes represent programs; green boxes indicate input and
output files. Blue arrows represent the flow of the different calculated properties. White arrows show the
main program path, whereas dotted arrows indicate “many-to-one” relationships within the pipeline.

- 7 -

VASCo manual

3.1 Getting started

3.1.1 General

At unix platforms an alias in the .cshrc file (or any other configuration file) can be set like:

alias vasco python <path>/VASCo.py

The program can be run within your working directory by typing the created alias with the
command line parameters.

vasco –in_dir ./ -filename <name>

Otherwise the program VASCo.py has to be located in the working directory.

python VASCo.py –in_dir ./ -filename <name>

where name is the code of the PDB file or the filename (without extension!) of the PDB file
which has to be located in the path specified with the –in_dir parameter. If no –in_dir
parameter is set the file has to be located at the folder <working_dir>/input.

3.1.2 Testrun

If the installation was successful and all programs are accessible a test run can be
performed by setting the –testrun parameter:

python VASCo.py –testrun

A ./test_out directory will be created with all output directories of a normal run. The
test_db.ppix.gz file located at the ./test_out/test/ppixdb_out/ directory can be
read into PyMOL using the provided PyMOL VASCo surface loader Plug-in.

- 8 -

VASCo manual

3.1.3 Example filename input:

The standard input folder is <working_dir>/input/ where your PDB input files are
located. You can change the input directory by using the –in_dir parameter to a different
directory.

VASCo.py –in_dir ./myinput -filename myfile.pdb

<working_dir>/input/
 pdb177L.pdb
 CODE.pdb
 test.ent
 something.pdb

For the example input files above the –filename parameter would have to be set as:

-filename 177L
-filename CODE
-filename test
-filename something

If there are similar filenames like pdb177L.pdb and 177L.pdb or 177L.ent in your
input directory, only the first one which appears in the directory will be used as input file.

3.1.4 Preparation of the PDB Files:

3.1.4.1 Crystal contact calculation

The VASCo program uses the CRYST1 entry within the PDB file to interpret the Hermann-
Mauguin space-group symbol and the crystal cell parameters for the calculation of the
crystal contacts. If this line is not present in the PDB file (e.g. because it is a homology
model) the program runs without the crystal contact calculation providing contacts and
surface properties calculated only from the present coordinates and chain allocations.

~~~~truncated~~~~ 
TURN     1  T1 ASP A  20  GLY A  23                                              
TURN     2  T2 THR A  54  VAL A  57                                              
CRYST1   72.600   72.600   82.200  90.00  90.00  90.00 P 42 2 2      8           
~~~~truncated~~~~  
ATOM 1 N MET A 1 55.368 64.575 17.778 1.00 19.26 N
ATOM 2 CA MET A 1 54.986 64.356 19.160 1.00 16.36 C
ATOM 3 C MET A 1 54.231 63.073 19.237 1.00 15.70 C
ATOM 4 O MET A 1 53.565 62.723 18.282 1.00 15.06 O
ATOM 5 CB MET A 1 54.130 65.527 19.656 1.00 18.41 C
~~~~truncated~~~~ 

Example of a CRYST entry in the PDB file (PDB Code 177L).  

- 9 - 



VASCo manual 

3.1.4.2 Surface patch calculation 

As the unit allocation uses the chain id within the PDB file to identify contact patches 
based on a distance criterion it is important that this allocation is done properly depending 
on the interfaces of interest. The patches are calculated between each unit. Chains can be 
allocated to units by setting the “-chain2unit” parameter. 

3.1.4.3 Unit allocation example: 

This is an example of a standard unit allocation within a PDB file. The PDB file consist of 
chain A, chain B and a hetero component which is in this example named as chain C. 
These chains will become (with standard settings) automatically UNIT 1, UNIT 2 and 
UNIT 3 respectively. The program calculates the contact patches between these 3 units 
additional to its crystal contacts (if crystal information is provided and the -
crystal_contacts parameter is not set to “0”). 
 

 
 
 UNIT 1: CHAIN A 
 UNIT 2: CHAIN B 
 UNIT 3: CHAIN C 
 
 
To discard hetero components the -HETATOM_INCLUDE parameter should be set to 0 
(which is the standard behavior). With that setting the hetero atoms are ignored for the 
surface calculation and the surface patches are calculated exclusively between chain A 
and chain B (and their crystal contacts). 
 
Every chain will become one UNIT in the standard unit allocation settings. One can unite 
chains to different units to get only contacts which are of special interest. For example if 
the user is interested in surface contacts between the protein and the hetero component 
but not in the contact between the two chains, one can use the -chain2unit parameter 
to specify the units by hand. Each chain has to be stated at the –chain2unit parameter 
(except the hetero component if it gets deleted as it is in this case) and the units are 
divided by a semicolon. 
 

- 10 - 



VASCo manual 

VASCo.py –in_dir ./ -filename myfile.pdb –HETATOM_INCLUDE 0  -
chain2unit  A;B 

 

 
 
 UNIT 1: CHAIN A + CHAIN B 
 UNIT 2: CHAIN C 
 
 

VASCo.py –in_dir ./ -filename myfile.pdb –HETATOM_INCLUDE 1 -
chain2unit  AB;C 

 
If one is interested only in biological contacts (or at least in contacts which are present in 
the file) and want to avoid additional crystal contact calculations, the parameter -
crystal_contacts can be set to 0. If crystal information is not present in the PDB file 
(within the CRYST1 line), the crystal contacts calculation will be skipped anyway. 
 

VASCo.py –in_dir ./ -filename myfile.pdb –crystal_contacts 0 

3.1.4.4 Surface difference calculation 

If you want to calculate the surface difference of two aligned structures you have to 
rename one structure to be chain A and the other structure to be chain B (or at least you 
have to be sure that the two structures have different chain identifiers). This can be easily 
done with the PyMOL program (which you have to use for the surface visualization at the 
end anyway). This program can also be used to align your structures of interest and save 
the aligned structures for input into the VASCo program. Open PyMOL and load your 
structures with the File-->Open menu or download them with the integrated PDB 
Loader service plug-in (Plugin-->PDB Loader service). Align one structure to the 
other using the align command or the GUI (graphical user interface) of PyMOL.  

align mobile, target  

- 11 - 



VASCo manual 

where mobile and target are the names of the structures you loaded in. Delete all water 
and hetero components using PyMOL. (e.g. remove solvent and remove hetatm ). 
After that rename the chain ids of one of the structures with PyMOL’s alter command. 

alter mobile and chain A, chain=”B” 

followed by a sort command: 

sort 

where mobile is the name of one of your structures and A is its chain id. This will rename 
the chain id A of the structure named mobile to chain id B . Combine the two structures 
into one object (e.g. name it to mycompare ) by using the create command. 

create mycompare, mobile or target 

where mobile and target again are the names of your structures (don’t forget the “or” in 
between of the two structure names). Now you can save (file-->save molecule and 
select the created mycompare object) as mycompare.pdb which can be used as input for 
the VASCo.py program. 
 
To perform a surface comparison run you have to set the –patch_calc_dist parameter 
to a high value (e.g. 1000.0 Å). As the two structures (with chain IDs A and B) were 
saved without the CRYST1 info in the file we just have to set the –patch_calc_dist . 

python VASCo.py –in_dir ./ -filename mycompare –patch_calc_dist 
1000.0 

The output path tree is located in /output/mycompare/ and the Vasco surface file is 
located at /output/mycompare/ppixdb_out/ and is named mycompare_db.ppix 
 
This file can be read into PyMOL using the VASCo Surface plug-in. 
 
A description of the PyMOL program itself can be found at   http://pymol.sourceforge.net/ . 
 

- 12 - 

http://pymol.sourceforge.net/


VASCo manual 

3.1.5 Surface Property Calculation 

3.1.5.1 surface points (MSMS) 

For calculation of the surface points we implemented the program MSMS (Michel Sanner’s 
Molecular Surface) Version 2.5.5 developed by M. Sanner et al. [2]. The input of the 
MSMS program is a sphere set file, which contains the center (x,y,z coordinates) and the 
radius r of one sphere per line in free format. In addition, the radius can be followed by an 
optional atom identification term. This identification in string format will be appended to the 
vertices in the surface output files. The input file in form of x, y, z, r, and n (as identification 
string) is generated automatically by the VASCo program which additionally runs the 
MSMS program. The output of the MSMS program is a list of surface points including 
normal vectors and a list of triangles with surface point allocations. These files will be 
interpreted for generation of the surface input file. The MSMS parameters –density and 
–probe_radius can be set. A detailed description of the MSMS program can be found at 
Michel Sanner’s web site http://www.scripps.edu/~sanner/html/msms_home.html . 

 

MSMS generated surface points and triangles of structure with PDB code 177l (lysozyme) visualized as 
CGO (Compiled Graphics Object) with PyMOL– VASCo Surface Plug In. 

3.1.5.2 hydrophobicity (HydroCalc) 

The HydroCalc program requests two input files which are generated by the VASCo main 
program automatically. One file contains the surface points, represented with an 
identification number and the coordinates x, y, z separated by semicolons. The second file 
contains the atom positions of the protein represented by the coordinates x, y, z and the 
HC value (hydrophobic contribution), also separated by semicolons. The output is a file 
with the calculated hydrophobic potential value next to the input identification number. This 
file will be used to color the generated MSMS surface according to the hydrophobic 
potential. The set of HC values which are used for the calculation can be set by the –
dic_type parameter (-dic_type 1,2 or 3) . 

- 13 - 

http://www.scripps.edu/~sanner/html/msms_home.html


VASCo manual 

 

  

Hydrophobic (lipophilic) potential annotated surface points of structure with PDB code 177l (lysozyme) 
drawn with PyMOL –VASCo Surface Plug In 

3.1.5.3 electrostatic potential (DelPhi) 

For the implementation of an electrostatic potential calculation at the surface point 
positions, we used the program DelPhi [3, 4]. DelPhi is able to calculate the electrostatic 
potential in and around proteins or macromolecules. Therefore, it uses a finite difference 
solution to the nonlinear Poisson-poltzmann equation. DelPhi requires as input a 
coordinate file of the molecule, charge distributions, a radius file and an input file with 
specified parameters. As most of the structure files deposited in the PDB do not have 
hydrogen information stored, it is necessary to calculate the hydrogen positions 
separately. This can be done at different levels, depending on the needs of the 
investigation. We used a variation of the program “protonate”. For standard calculation, we 
considered only backbone hydrogen’s (and N terminal hydrogen’s). In addition, a 
simplifying step was applied on the charge input file, where only full charges of amino 
acids and N and C - termini as well as backbone atoms were considered (at standard 
settings). The output of the DelPhi run is interpreted and used to color the surface 
according to electrostatic potential. The input files for the Delphi run are located at 
[modul_path]/ppix_modules/cprogr/inputfiles/. Own input files can be 
provided  with the –chargefile, –sizefile and –parafile parameters. A detailed 
description of these files and of the DelPhi program itself can be found at the honig lab 
website http://wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:DelPhi .  
 

- 14 - 

http://wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:DelPhi


VASCo manual 

  

Electrostatic potential annotated surface of PDB file 177l (lysozyme) visualized with PyMOL PPIX 
Surface Plug In and ray traced within PyMOL 

3.1.5.4 patch point distance (PatchCalc) 

The program PatchCalc is used to calculate the patches of a unit, which includes surface 
points between different units as well as surface points between symmetry related 
surfaces. The program requires three input files which are all automatically provided by the 
VASCo main program. The first input is a matrix file that contains the information to 
calculate the fractional coordinates of the surface, in ppix – csv internal format. The 
second file is a file with the surface points including unit allocation information and the third 
file contains information about the corresponding symmetry matrices. This symmetry files 
are located at [modul_path]/dict/symop/CCP4i_4/ and named like the space group 
(e.g. symmetry file of space group P 21 21 21 is named p212121.sym ). This input 
directory can be set by the -symop_in_dir parameter. By creating a new symmetry file 
(e.g. myp1_symred.sym) and by setting the -H_M_space_group parameter to this 
particular symmetry name (myp1_symred), it is possible to use own generated symmetry 
files (e.g. for symmetry reduction) as it is explained in the advanced example section.  

#Created with PPIX - Sympars from original CCP4i file 
#   4  Symmetry Operations Spacegroup: P 21 21 21 IntTablNr: 19 
   1.00000    0.00000    0.00000 
   0.00000    1.00000    0.00000 
   0.00000    0.00000    1.00000 
   0.00000    0.00000    0.00000 
  -1.00000    0.00000    0.00000 
   0.00000   -1.00000    0.00000 
   0.00000    0.00000    1.00000 
   0.50000    0.00000    0.50000 
  -1.00000    0.00000    0.00000 
   0.00000    1.00000    0.00000 
   0.00000    0.00000   -1.00000 
   0.00000    0.50000    0.50000 
   1.00000    0.00000    0.00000 
   0.00000   -1.00000    0.00000 
   0.00000    0.00000   -1.00000 
   0.50000    0.50000    0.00000 

Example of a symmetry matrix library file (p212121.sym)  

- 15 - 



VASCo manual 

 

Scheme overview of patch calculation  

 
The distance, within the surface points are considered to be in contact to each other, can 
be set by the –patch_calc_dist parameter. This parameter should be set to a high 
value if you want to perform a surface distance comparison of two aligned structures (e.g. 
to 1000.0 Å) due to get all differences and not just differences within 1.5 Å (which is the 
standard set for surface point to surface point contact distance). 

- 16 - 



VASCo manual 

3.2 Input parameters: 

All variables within this section can be put into the standard input.ppix file or set via 
the command line. 
 
variable category 

variable 
type 

(internal) 
Values standard explanation 

-opt_file basic string filename ./input.ppix basic input file for VASCo parameters 

-out_dir basic string directory ./output output path for all the calculations 

PDB_FILE:filename  input of a file which contains PDB 
codes to proceed 

pdbCODE.ent input of filename 
CODE input of PDB code (example) 

CODE.pdb input of PDB code (example) 

-filename basic string 

CODE1;CODE2;COD
E3 

None 

input of a list  of PDB codes 

-in_dir basic string directory ./input/ Input directory where the PDB input 
files are located 

-testrun optional    run the testrun 

-h optional    show help message 

-symop_in_dir basic  directory [modul_path]/dict/symop/
CCP4i_4/ 

path to the CCP4i- PPIX symmetry 
files 

-subdir basic string directory [CODE] 
sub- directory of [out_dir] for the run 
(standard is the PDB code as 
directory name for each run ) 

log_dir basic string directory [out_dir]/[filenamedir]/logfi
le/ not changeable  

log_name basic string filename [log_dir]/PPIX-
Convert.log" not changeable  

0 show only error messages 
1 show essential log messages 
2 show more log messages 
3 show all log messages 

-set_verb_level basic integer 

4 

4 

show all messages and values 
0 write on standard output 
1 write to log file and to standard output -set_write_log basic integer 
2 

0 
write only to logfile 

msms_out_dir basic string directory [out_dir]/[filenamedir]/ms
ms_out/ 

not changeable internal directory tree 
generation 

conv_out_dir basic string directory [out_dir]/[filenamedir]/con
v_out/ 

not changeable internal directory tree 
generation 

hyd_out_dir basic string directory [out_dir]/[filenamedir]/hyd
_out/ 

not changeable internal directory tree 
generation 

delphi_out_dir basic string directory [out_dir]/[filenamedir]/del
phi_out/ 

not changeable internal directory tree 
generation 

patch_out_dir basic string directory [out_dir]/[filenamedir]/pat
ch_out/ 

not changeable internal directory tree 
generation 

ppixdb_out_dir basic string directory [out_dir]/[filenamedir]/ppix
db_out/ 

not changeable internal directory tree 
generation 

1 

2 -dic_type HydroCalc integer 

3 

3 HC value type (column) in dictionary 
for hydrophobic contribution 

-H_M_space_group PatchCalc string (e.g. P 21 21 21) P 1 

set spacegroup by hand in form of 
HM- Space group symbols, if not set it 
is read from the CRYST1 entry in the 
PDB file 

1 include heteroatoms 
-HETATOM_INCLUDE Structure Integer 

0 
1 

delete heteroatoms 
1 Include alternates -ALTERNATE Structure Integer 0 0 delete alternates 
1 include hydrogens -HYDROGENS structure integer 0 0 delete hydrogens 

- 17 - 



VASCo manual 

variable category 
variable 

type 
(internal) 

Values standard explanation 

1 include water -WATER structure integer 0 0 delete water 

"ABCD"  (=1 unit)  

"AB;CD" (=2 units) -chain2unit structure string 

"A;BCD" (=2 units) 

None 

combine chains into a unit, if it is 
None or not set, automatic unit 
creation based on PDB chain entry is 
performed (each chain will become 
one unit) 

1 

perform chain to unit assignment (if 
chain2unit is not specified), each 
chain within the PDB will become one 
unit  -chain_to_unit structure integer 

0 

1 
do not perform chain to unit 
assignment. All entries are assigned 
to unit “0” 

1 create one surface file per unit for 
MSMS input xyzrn -surface_per_unit convert 

msms_xyzrn integer 
0 

1 do not create one file per unit use 
whole surface for MSMS 

-probe_radius MSMS float 1.4 - 10.0 1.4 probe radius for MSMS input to 
calculate Surface 

-density MSMS integer 1-10 1 density setting for MSMS vertex/Å2  

all_components 
-msms_components MSMS string 

None 
all_components 

perform surface generation for all 
components (hetero and cavity as 
well as separated chains or units) 

0 delete additional surface files for 
cavities created from MSMS -msms_delete MSMS integer 

1 
1 

don’t delete additional surface files 
1 
2 -hyd_verb_level HydroCalc integer 
3 

1 verbose level for external HydroCalc 

-hyd_cutoff_radius HydroCalc float 0.1-X 9.0 cut-off for HydroCalc calculation 
(empirical cut-off)  

1 do not write log for delphi   

-delphi_nolog Delphi integer 
0 

0 
write delphi log file 

-chargefile Delphi string Directory+file 
[modul_path]/ppix_modul
es/cprogr/inputfiles/full_b
ackbone.crg 

Delphi input charge file  

-sizefile Delphi string Directory+file 
[modul_path]/ 
/ppix_modules/cprogr/inp
utfiles/neu.siz 

Delphi input size file 

-parafile Delphi string Directory+file 
[modul_path]/ 
/ppix_modules/cprogr/inp
utfiles/protein.prm 

Delphi input parameter file 

-patch_calc_dist PatchCalc Integer 1.5-X 1.5 

distance within surface points are 
considered to be in contact, set it to a 
high value for surface distance 
comparison of two aligned 
structures(e.g. 1000) 

1 
2 -patch_verb_level PatchCalc Integer 
3 

 verbose level for external PatchCalc 

1 
Avoid "Press any key to continue" 
statements, for background and 
cluster runs 

-no_press_key basic integer 

0 

0 

use “press any key to continue” 

-analyse_dir basic string directory [out_dir]/__analyse/ path to the output of general run 
information for all runs  

-run_id basic string e.g. “MYRUNID“ 0 specify run ID, for multiple or cluster 
runs 

1 akip calculation of hydrophobicity 
-skip_hydrocalc HydroCalc integer 

0 
"0 

don’t skip hydrophobicity calculation 

-skip_delphi Delphi integer 1 "0" skip calculation of delphi 

- 18 - 



VASCo manual 

variable category 
variable 

type 
(internal) 

Values standard explanation 

0 don’t skip delphi calculation 

1 Skip calculation of protonate and 
delphi -skip_protonate Delphi integer 

0 
"0" Don’t Skip calculation of protonate 

and delphi 
-all_log Log string filename all.log filename for run log file (for all runs)  

0 do not calculate symmetry contacts -crystal_contacts PatchCalc integer 1 1 calculate crystal symmetry contacts 

 

3.3 Output: 

The program creates several folders and files during calculation. 
The standard files and paths are: 
 
<working_dir>/ 
 output/ 
  __analyse/ 
   all.log ........ logfile for all runs 
   all_lock.txt ........ lock all.log 
  <name>/  ........ dir created for each filename 
   conv_out/ ........ conversion in/out files 
    <name>-<unit>_atoms.csv 
    <name>-<unit>_surface.csv 
    <name>-<unit>_surface.pdb 
    <name>-<unit>.xyzn 
    <name>-<chain>.pdb 
    <name>_surfaceunit.csv 
   delphi_out/ ........ DelPhi and in/out files 
    <name>-<unit>_delphi.csv 
    <name>-<unit>.frc 
    <name>-<unit>.modpdb 
    <name>-<unit>.polH 
    <name>-<unit>.prm 
    <name>-<unit>_surface.pdb 
    <name>-<chain>.polH 
   hyd_out/ ........ HydroCalc in/out files 
    <name>-<unit>_hyd.csv 
   logfile/ ........ log files 
    <name>-<unit>_delphi.log 
    <name>_patch.log 
    PPIX-Convert.log 
   msms_out/ ........ MSMS in/out files 
    <name>-<unit>.area 
    <name>-<unit>.face 
    <name>-<unit>.log 
    <name>-<unit>.vert 
   patch_out/ ........ PatchCalc in/out files 
    <name>-<unit>_patch.csv 
   ppixdb_out/ ........ surface file with properties 
    <name>_db.ppix.gz. file for visualization using the 

PyMOL Plug-in 

- 19 - 



VASCo manual 

The conversion and calculation output files can be investigated or deleted after the run. An 
additional run with the same filename will overwrite all created files in the directory. The 
final file which is used for viewing within PyMOL using the VASCo PyMOL surface viewer 
Plug-in is the compressed file <name>_db.ppix.gz located in the ppixdb_out directory 
of each filename directory. This file can be read in as it is by loading the file with the 
“Load file” menu within the VASCo PyMOL plug-in window. 
 
Use the -h parameter to get additional input information for the VASCo Module. 

python VASCo.py -h 

Usage: 
______ 
VASCo.py -arg1  value1  -arg2  value2 -argX   valueX 
arguments: 
__________________________________________________________________________________________ 
-h                                        :this help screen 
-opt_file         <ppix option file>      :specify filename of PPIX options input file 

              if no file exists it will be written,change it  
              for your own settings and rerun program  

-in_dir           <input directory>       :Directory of input pdb files  
                                            (pdbCODE.ent   files) 
-out_dir          <output directory>      :main dir where output directories 
                                            will be created 
-filename         <code>                  :PDB code to proceed 
                  <code;code;code>        :proceed some PDB CODES (4req;1crw;177l)  
                  <PDB_FILE:filename>     :read in PDB-codes from given file 
                                            (PDB - codes in first column) 
-testrun                                  :runs program with default test directories 
                                            and input files 
__________________________________________________________________________________________  
<variable>       <setting>                :You can set and change every variable if 
                                            you want here for available variables and 
                                            settings type -hv 
-hv                                       :Help Screen for additional Variables and Settings 

 
The standard parameters are specified in the file input.ppix. It can be changed and 
additionally overruled by the command line input variables. 
 

- 20 - 



VASCo manual 

4 Visualization in PyMOL 

After the installation of the VASCo PyMOL Plug in (ppixplugin_vx.py) the surface 
loader can be accessed by the PyMOL drop down menu Plugin ---> PPIX Surface 
Loader. To load the output of the VASCo program (<name>_db.ppix.gz) located at 
<name>/ppixdb_out/ after a VASCo run, use File --> Open file in the VASCo 
Surface Loader window and select the test_db.ppix.gz file or any other VASCo 
created surface file. Depending on the size of the surface file and the information provided 
(and the system specifications) this may take some time.  
 
After loading the surface is shown within PyMOL as CGO (Compiled Graphics Objects) 
annotated with the first property which was read from the file (figure below section C). The 
surface is separated into surface contact patches and non-contact surfaces and named in 
PyMOL as *_p (p for patch) and *_np (np for nopatch), respectively. The different 
units are indicated by a unit id after the surface name of the loaded surface file. (e.g. 
177L_0_p and 177L_0_np) You can select the surface properties of interest by invoking 
the checkbox next to the property (figure below section B) and set color and ramp 
properties (figure below section D). You can load each property separately by clicking the 
(RL) button located at the surface description (figure below section B) or select multiple 
properties and click the RELOAD(RL) button on the bottom of the main window. As every 
surface is loaded separately the loading time of the surface representations may take 
some time. After loading you can easily switch between loaded surface representations 
with the function keys without a loading delay. The Apply default settings button 
will set the values of all checkboxes, ramps and color settings to the standard values. 
Contact patch surfaces can be colored and viewed separately. (figure below section A) 
The protein structure file which was used to create the surface can be loaded separately 
into PyMOL using the normal PyMOL file PDB loading commands.  
 
It is possible to choose color, color-ramp and transparency of the different surfaces and 
surface properties. The minimal and maximal values for color ramp creation are calculated 
automatically for each property. The ramp can be set manually as well, by replacing the 
Calc entry by your own values. (figure below section D) If you want the ramp calculated 
by the program again replace your values by Calc and hit the (RL) button again.  

- 21 - 



VASCo manual 

(D) 

(B) (C) 

(A) 

 

PyMOL application and VASCo PyMOl plug-in window (extended view). The calculated PPIX surface file 
of 1km4 is loaded 

 
 
For the testfile surface (test_db.ppix.gz ) the output should look similar to the figure 
below. 
 

- 22 - 



VASCo manual 

 
 

Example of a test_run file (test_db_ppix.gz) loaded into PyMOL with the surface loader Plug-In 

 
 
 
 
For more information about PyMOL commands, type help in the command line. For more 
information about the PyMOL command line see: 
http://pymol.sourceforge.net/newman/user/S0210start_cmds.html
 

5 Examples 

5.1 Advanced example 

The structure of a decarboxylase with the PDB code 1KM4 was chosen as an example 
structure to show the unit allocation effects. The structure consists of an asymmetric unit 
indicated as chain “A” with a hetero component indicated as chain “B” within the PDB file. 
The orthogonal to fractional matrix is determined by the cell constants a,b,c and the cell 
angles α, β and γ. The spacegroup of the structure is C2221 defined within the PDB file. 
Without a specification of unit allocations, the chain “A” will became unit one and the 
hetero component will became unit two. The orthogonal to fractional matrix is calculated 
with the cell constants read from the PDB file. If the symmetry file is not specified by input 
parameter settings, the Hermann-Mauguin space-group symbol is read from the CRYST1 
entry of the PDB file and used to get the associated symmetry file from the symmetry 
matrix library. The circumstance that the hetero component is defined as its own unit 
implicates that the contacts between the hetero component and the protein will be 
calculated as well as the contacts between the symmetry related molecules. (figure below 
a) If one defines chain A and the hetero component to a single unit and if the structure is 

- 23 - 

http://pymol.sourceforge.net/newman/user/S0210start_cmds.html


VASCo manual 

seen as monomer, you will obtain only the crystal contacts. (figure below b) Anyway, the 
molecule is believed to form a homo-dimer with one of its symmetry related counter parts. 
This is a special case. To calculate the crystal contacts of this unit e.g. without the 
biological contact part, one has to generate the symmetry related molecule responsible for 
the biological contact and save the coordinates of both molecules within a new PDB file 
(e.g. as 1km4_biol.pdb).(this can be done by using the program PyMOL). Because the 
second chain fits now to the symmetry related positions one has to reduce the symmetry 
for the calculation. This can be done by eliminating the related symmetry matrix entries in 
the library file named c2221.sym by insertion of a “#” sign in front of the corresponding 
lines and save it as a new library file. (e.g. as 1km4_symred1_c2221.sym which can be 
seen below) After that, one can specify the new reduced symmetry file for this special case 
in the input settings. With the –chain2unit parameter one can combine the two chains with 
its hetero-components into a single unit. (figure below d)  

#Created with PPIX - Sympars from original CCP4i file 
#   8  Symmetry Operations Spacegroup:   C 2 2 21 IntTablNr: 20 
   1.00000    0.00000    0.00000 
   0.00000    1.00000    0.00000 
   0.00000    0.00000    1.00000 
   0.00000    0.00000    0.00000 
#  -1.00000    0.00000    0.00000 
#   0.00000   -1.00000    0.00000 
#   0.00000    0.00000    1.00000 
#   0.00000    0.00000    0.50000 
  -1.00000    0.00000    0.00000 
   0.00000    1.00000    0.00000 
   0.00000    0.00000   -1.00000 
   0.00000    0.00000    0.50000 
#   1.00000    0.00000    0.00000 
#   0.00000   -1.00000    0.00000 
#   0.00000    0.00000   -1.00000 
#   0.00000    0.00000    0.00000 
   1.00000    0.00000    0.00000 
   0.00000    1.00000    0.00000 
   0.00000    0.00000    1.00000 
   0.50000    0.50000    0.00000 
  -1.00000    0.00000    0.00000 
   0.00000   -1.00000    0.00000 
   0.00000    0.00000    1.00000 
   0.50000    0.50000    0.50000 
  -1.00000    0.00000    0.00000 
   0.00000    1.00000    0.00000 
   0.00000    0.00000   -1.00000 
   0.50000    0.50000    0.50000 
   1.00000    0.00000    0.00000 
   0.00000   -1.00000    0.00000 
   0.00000    0.00000   -1.00000 
   0.50000    0.50000    0.00000 
 

User created file for symmetry reduction 1km4_symred1_c2221.sym  (corresponding symmetry matrices 
are commanded out)

- 24 - 



VASCo manual 

  

#Case (a)  
#File 1km4.pdb 
VASCo.py -filename 1km4 
 
#Case (b)  
#File 1km4.pdb with chain2unit specification (chain A + hetero) 
VASCo.py -filename 1km4 –chain2unit AB 
 
#Case (c) 
#File 1km4_pqs.pdb with symmetry reduction and 2 units (AB and CD) 
VASCo.py -filename 1km4_pqs -H_M_space_group 1km4_symred1_c2221 –
chain2unit AB;CD 
 
#Case (d) 
#File 1km4_pqs.pdb with symmetry reduction and all to one unit 
VASCo.py -filename 1km4_pqs -chain2unit ABCD -H_M_space_group 
1km4_symred1_c2221 

 

The output can be loaded into PyMOL using the VASCo PyMOL Plug-in. 

- 25 - 



VASCo manual 

 

Example of calculations for 1K4M for different unit allocations. a) the protein contains a hetero 
component which is defined as a second unit. The green contact patch is generated because of this 
allocation. The other colored patches are generated by applying symmetry operations. b) The same 
calculation with the hetero component allocated to the same unit as the chain. The green hetero contact 
patch is gone. c) The symmetry equivalent structure which formed the big blue patch is defined as 
second chain and allocated as second unit within the calculation d) as the blue patch is believed to be a 
biological one the two chains can be combined to one unit to calculate only the crystal patches. 

 
For a standard run usually no changes have to be made within the PDB file. 
 

6 References 

 
 
1. The PyMOL Molecular Graphics System [http://pymol.sourceforge.net/] 
2. Sanner MF, Olson AJ, Spehner J-C: Reduced surface: an efficient way to 

compute molecular surfaces. Biopolymers 1996, 38:305-320. 
3. Honig B, Nicholls A: Classical electrostatics in biology and chemistry. Science 

1995, 268:1144-1149. 

- 26 - 

http://pymol.sourceforge.net/


VASCo manual 

4. Nicholls A, Honig B: A rapid finite difference algorithm, utilizing successive 
over-relaxation to solve the Poisson-Boltzmann equation. J Comput Chem 
1991, 12:435-445. 

 
 

- 27 - 


	Acknowledgments
	Disclaimer
	Credits

	Table of Content

