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   ABSTRACT 
 

 

Cluster Analysis for Large Scale Gene Expression Studies 
High throughput gene expression analysis is becoming more and more important in many 
areas of biomedical research. cDNA microarray technology is one very promising approach 
for high throughput analysis and provides the opportunity to study gene expression patterns 
on a genomic scale. Thousands or even tens of thousands of genes can be spotted on a 
microscope slide and relative expression levels of each gene can be determined by measuring 
the fluorescence intensity of labeled mRNA hybridized to the arrays. Beyond simple 
discrimination of differentially expressed genes, functional annotation (guilt-by-association) 
or diagnostic classification requires the clustering of genes from multiple experiments into 
groups with similar expression patterns. A platform independent Java package of tools has 
been developed to simultaneously visualize and analyze a whole set of gene expression 
experiments. After reading the data from flat files several graphical representations of 
hybridizations can be generated, showing a matrix of experiments and genes, where multiple 
experiments and genes can be easily compared with each other. Fluorescence ratios can be 
normalized in several ways to gain a best possible representation of the data for further 
statistical analysis. Hierarchical and non hierarchical algorithms have been implemented to 
identify similar expressed genes and expression patterns, including: 1) hierarchical clustering, 
2) k-means, 3) self organizing maps, 4) principal component analysis, and 5) support vector 
machines. More than 10 different kinds of similarity distance measurements have been 
facilitated, ranging from simple Pearson correlation to more sophisticated approaches like 
mutual information. Moreover, it is possible to map gene expression data onto chromosomal 
sequences. The flexibility, variety of analysis tools and data visualizations makes this 
software suite a valuable tool in future functional genomic studies. 
 
Keywords: microarray, cluster analysis, genomics, bioinformatics, java  

 
Clusteranalyse von umfangreichen Genexpressionsdaten 
Die Hochdurchsatz-Genexpressionsanalyse wird immer wichtiger in vielen Bereichen der 
biomedizinischen Forschung. Die cDNA Micorarray-Technologie ist ein sehr vielver-
sprechender Ansatz für Hochdurchsatzanalyse und bietet die Möglichkeit, Genexpressions-
muster auf Genomebene zu studieren. Tausende oder sogar zehntausende von Genen können 
auf ein Mikroskopplättchen gedruckt werden, und die relative Expression von jedem Gen 
kann durch die Messung der Fluoreszenzintensität der zu den Arrays hybridisierten und 
markierten RNA gemessen werden. Geht man über die simple Unterscheidung von 
unterschiedlich exprimierten Genen hinaus, benötigen die funktionelle Annotation oder 
diagnostische Klassifikation das Clustern von Genen von multiplen Experimenten in Gruppen 
von ähnlich exprimierten Genen. Es wurde ein plattform-unabhängiges Java-Paket von 
Werkzeugen für die simultane Visualisierung und Analyse von ganzen Genexpressions-
experimentensets entwickelt. Nachdem die Daten eingelesen worden sind, können 
verschiedene  graphische Repräsentationen der Hybridisierungen erstellt werden, die eine 
Matrix von Experimenten und Genen zeigt, mit der mehrere Experimente und Gene leicht 
miteinander verglichen werden können. Die Fluoreszenzverhältnisse können auf mehrere 
Arten normalisiert werden, um eine bestmögliche Repräsentation der Daten für die weitere 
statistische Auswertung erlangen zu können. Es wurden hierarchische und nicht hierarchische 
Clusterverfahren für die Identifikation von ähnlich exprimierten Genen und Expressions-
mustern implementiert, einschließlich: 1.) Hierarchisches Clustern, 2) k-means, 3.) Self 
Organizing Maps, 4) Principal Component Analysis und 5) Support Vector Machines. Mehr 
als 10 verschiedene Arten von Ähnlichkeitsdistanzmessungen wurden implementiert, von der 
simplen Pearson Korrelation zu aufwendigeren Verfahren wie Mutual Information. Weiters ist 
es möglich, Genexpressionsdaten auf chromosomale Sequenzen zu projizieren. Die 
Flexibilität, Auswahl an Analysewerkzeugen und Datenvisualisierungen machen diese 
Software zu einem wertvollen Werkzeug für zukünftige Studien von Genomen. 
 
Schlüsselworte: Mikroarray, Clusteranalyse, Genomische Forschung, Bioinformatik, Java 
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Glossary 
API  Application Programming Interface 
 
Base Pair    Two bases which form a "rung of the DNA ladder." A DNA nucleotide is 

made of a molecule of sugar, a molecule of phosphoric acid, and a molecule 
called a base. The bases are the "letters" that spell out the genetic code. In 
DNA, the code letters are A, T, G, and C, which stand for the chemicals 
adenine, thymine, guanine, and cytosine, respectively. In base pairing, 
adenine always pairs with thymine, and guanine always pairs with cytosine. 

 
BMU  Best Matching Unit of an SOM. 
 
cDNA  Complementary DNA, just one strain of DNA 
 
Chromosome    One of the threadlike "packages" of genes and other DNA in the nucleus of 

a cell. Different kinds of organisms have different numbers of 
chromosomes. Humans have 23 pairs of chromosomes, 46 in all: 44 
autosomes and two sex chromosomes. Each parent contributes one 
chromosome to each pair, so children get half of their chromosomes from 
their mothers and half from their fathers. 

 
Codon  Three bases in a DNA or RNA sequence which specify a single amino acid. 
 
Cy3, Cy5    Fluorescent dyes used in microarray technology 
 
DNA  Deoxyribonucleic acid. The chemical inside the nucleus of a cell that carries 

the genetic instructions for making living organisms. 
 
DNA sequencing   Determining the exact order of the base pairs in a segment of DNA. 
 
Double helix    The structural arrangement of DNA, which looks something like an 

immensely long ladder twisted into a helix, or coil. The sides of the "ladder" 
are formed by a backbone of sugar and phosphate molecules, and the 
"rungs" consist of nucleotide bases joined weakly in the middle by 
hydrogen bonds. 

 
Gene The functional and physical unit of heredity passed from parent to 

offspring. Genes are pieces of DNA, and most genes contain the 
information for making a specific protein. 

 
Gene expression   The process by which proteins are made from the instructions encoded in 

DNA. 
 
Genetic code  The instructions in a gene that tell the cell how to make a specific protein. 

A, T, G, and C are the "letters" of the DNA code; they stand for the 
chemicals adenine, thymine, guanine, and cytosine, respectively, that make 
up the nucleotide bases of DNA. Each gene's code combines the four 
chemicals in various ways to spell out 3-letter "words" that specify which 
amino acid is needed at every step in making a protein. 
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Genome    All the DNA contained in an organism or a cell, which includes both the 
chromosomes within the nucleus and the DNA in mitochondria. 

 
GUI Graphical User Interface 
 
HC Hierarchical Clustering 
 
HCA Hierarchical Clustering Analysis 
 
HGP Human Genome Project. An international research project to map each 

human gene and to completely sequence human DNA. 
 
Hybridization Base pairing of two single strands of DNA or RNA. 
 
IDE Integrated Development Environment 
 
JDK Java Development Kit 
 
JIT Just In Time 
 
JRE Java Runtime Environment 
 
JVM Java Virtual Machine 
 
MAML MicroArray Markup Language 
 
MIAME Minimum Information About a Microarray Experiment 
 
MGED Microarray Gene Expression Database group 
 
Microarrays A new way of studying how large numbers of genes interact with each other 

and how a cell's regulatory networks control vast batteries of genes 
simultaneously. The method uses a robot to precisely apply tiny droplets 
containing functional DNA to glass slides. Researchers then attach 
fluorescent labels to DNA from the cell they are studying. The labeled 
probes are allowed to bind to complementary DNA strands on the slides. 
The slides are put into a scanning microscope that can measure the 
brightness of each fluorescent dot; brightness reveals how much of a 
specific DNA fragment is present, an indicator of how active it is. 

 
mRNA Messenger RNA. Template for protein synthesis. Each set of three bases, 

called codons, specifies a certain protein in the sequence of amino acids that 
comprise the protein. The sequence of a strand of mRNA is based on the 
sequence of a complementary strand of DNA. 

 
NCBI National Center for Biotechnology Information 
 
Nucleotide  One of the structural components, or building blocks, of DNA and RNA. A 

nucleotide consists of a base (one of four chemicals: adenine, thymine, 
guanine, and cytosine) plus a molecule of sugar and one of phosphoric acid. 

 
Oligo Oligonucleotide, short sequence of single-stranded DNA or RNA. Oligos 

are often used as probes for detecting complementary DNA or RNA 
because they bind readily to their complements. 

 
ORF Open Reading Frame. 
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PC Principal Component 
 
PCA Principal Component Analysis. 
 
PCR Polymerase Chain Reaction. A fast, inexpensive technique for making an 

unlimited number of copies of any piece of DNA. Sometimes called 
"molecular photocopying," PCR has had an immense impact on biology and 
medicine, especially genetic research. 

 
Primer A short oligonucleotide sequence used in a polymerase chain reaction. 
 
Protein A large complex molecule made up of one or more chains of amino acids. 

Proteins perform a wide variety of activities in the cell. 
 
PWM Position Weight Matrix 
 
RMS Root Mean Square 
 
RNA Ribonucleic acid. A chemical similar to a single strand of DNA. In RNA, 

the letter U, which stands for uracil, is substituted for T in the genetic code. 
RNA delivers DNA's genetic message to the cytoplasm of a cell where 
proteins are made. 

 
SD Standard Deviation 
 
SDK Software Development Kit 

 
SOM Self Organizing Map/Maps. 
 
SVD Singular Value Decomposition. 
 
SVM Support Vector Machines. 
 
UPGMA Unweighted Pair-Group Method using Arithmetic averages 
 
VM Virtual Machine. 
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CCHHAAPPTTEERR  11  
Introduction 

Exactly a century ago, in 1900, Hugo Marie de Vries, Carl Erich Correns, and Erich 

Tschermark von Seysenegg independently rediscovered Gregor Mendel’s work on the rules of 

heredity, which can be seen as the beginning of genetic research. More than a decade passed 

before Thomas Hunt Morgan redefined those ideas to a concept of heritable genetic units 

strung along chromosomes [1]. In 1953, Francis Crick and James Watson published their 

famous one-page paper about the discovery of the double-helical structure of DNA, and that 

began the process of unlocking the secrets of the molecule [2], leading to our present 

understanding of the idea it plays in heredity.  

 

The rapid development of sequencing and computer technology in the last years lead to the 

complete sequencing and annotation of many important model organisms including 

Haemophilus influenzae (first genome of a free living organism, 1.830.137 base pairs [3]), 

Saccharomyces cerevisiae (first eukaryotic genome sequence, 12.068 kilo bases [4]), 

Caenorhabditis elegans (first complete sequence of multicellular organism [5]), Vibrio 

cholerae (4.033.460 base pairs [6]), Drosophila melanogaster (120 mega bases [7]), and more 

than 30 microbial genomes, Arabidopsis thaliana (an important model plant [8]), as well as 

parts of Mus musculus (the mouse) and of course Human [9, 10].  

 

                
Figure 1.1: Some of the milestones in Genome research and genetics. 

 

This year, in 2000, both private Celera Genomics and the international government 

consortium of laboratories called the Human Genome Project (HGP) are releasing first draft 

versions of the sequence of base pairs in human DNA. By the end of 2002 the complete and 

error free human DNA sequence will be public available in the databases of the National 

Library of Medicine and other institutes all over the world. 



CHAPTER 1   INTRODUCTION 
 

2 

The next challenge will be to determine the location and function of all genes. The aim is to 

provide biologists with an inventory of all genes used to assemble a living creature, similar to 

the chemistry’s Periodic Table [11]. Understanding the biological systems with tens of 

thousands or even 100.000 genes will similarly require organizing the parts by properties and 

will reflect similarities at diverse levels such as [12]: 

 

� Time and place of RNA expression during development 

� Subcellular localization and intermolecular interaction of protein products 

� Physiological response and disease 

� Primary DNA sequence in coding and regulatory regions and 

� Polymorphistic variation within a species or subgroup 

 

Because of the sheer magnitude of the problem, traditional gene-by-gene approaches were not 

sufficient and new methods and technologies have been invented to read out all components 

simultaneously. These high throughput gene analysis methods are becoming more and more 

important in many areas of biological and biomedical research as well as in clinical 

diagnostics, providing biologist with a more global view of biological processes.  

 

 

1.1 Microarrays 
Microarray technology [13-18] is one very promising approach for high throughput analysis 

and gives the opportunity to study gene expression patterns on a genomic scale.  

 

It all began about a quarter century ago, with Ed Southern’s key insight that labeled nucleic 

acid molecules could be used to interrogate nucleic acid molecules attached to a solid support 

[19]. Today, thousands or even tens of thousands of genes can be spotted on a microscope 

slide and relative expression levels of each gene can be determined by measuring the 

fluorescence intensity of labeled mRNA hybridized to the arrays, facilitating the measurement 

of RNA levels for the complete set of transcripts of an organism. 

 

Applied to functional genetics and mutation screening, microarrays give us the opportunity to 

determine thousands of expression values in hundreds of different conditions [20], allowing 

the contemplation of genetic processes on a whole genomic scale to determine genetic 

contributions to complex polygenic disorders and to screen for important changes in potential 

disease genes [21]. 
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cDNA microarrays exploit the preferential binding of complementary, single stranded nucleic 

acid sequences. Basically, a microarray is a specially coated glass microscope slide to which 

cDNA molecules are attached at fixed locations, called spots. With up to date computer 

controlled high-speed robots 19200 and more spots can be printed on a single slide, each 

representing a single gene. RNA from control and sample cells is extracted. Fluorescently 

labeled cDNA probes are prepared by incorporating either Cye-3 or Cye-5-dUTP using a 

single round of reverse transcription, usually taking the red dye for RNA from the sample 

cells and the green dye for that from the control population. Both extracts are simultaneously 

incubated on the microarray, enabling the gene sequences to hybridize under stringed 

conditions to their complementary clones attached to the surface of the array [22,23]. 

 

DNA
clones

test reference
excitation

laser 1 laser 2

computer
analysis

hybridize target
to microarray

reverse
transcription

PCR amplification
purification

label
with

fluor dyes

 
 

Figure 1.2: cDNA microarray schema. First DNA clones are spotted onto a microscopic glass 

slide. After hybridization the slide is scanned using laser excitation resulting in two images as 

a basis for further analysis [23]. 

 

Laser excitation of the incorporated targets yield an emission with a characteristic spectra, 

which is measured using a scanning confocal laser microscope. Monochrome images from the 

scanner are then imported into software in which they are pseudo-colored and merged. A spot 

will for instance appear red, if the corresponding RNA from the sample population is in 

greater abundance and green, if the control population is in greater abundance. If both are 

equal, the spots will appear yellow, if neither binds, the spot will appear black. Thus, the 

relative gene expression levels of sample and reference populations can be estimated from the 

fluorescence intensities and colors emitted by each spot during scanning. 
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Figure 1.3: (left) Scan of a cDNA microarray containing the whole yeast genome. (right) 

microarray spotting device at The Institute for Genomic Research (top, bottom) and examples 

of commonly used print heads (middle). 

 

The production and hybridization of slides is just one pace in a pipeline of many steps 

necessary to gain meaningful information from microarray experiments. Because of the vast 

amount of data produced by a microarray experiment, sophisticated software tools are used to 

normalize and analyze the data [24, 25]. 

 

First the scanned images are analyzed using image analysis software, which evaluates the 

expression of a gene by quantifying the ratio of the fluorescence intensities of a spot.  The 

quantified intensities provide information about the activity of a specific gene in a studied cell 

or tissue. High intensity means high activity, low intensity indicates low or no activity. 

 

The next step is to extract the fundamental patterns of gene expression inherent in the data in 

a mathematical process called clustering, which organizes the genes into biological relevant 

clusters with similar expression patterns (coexpressed genes). There are three reasons for 

interest in coexpressed genes [26-28]: 

 

First, there is evidence that many functionally related genes are coexpressed [29, 30]. For 

example, genes coding for elements of a protein complex are likely to have similar expression 
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patterns. Hence, grouping genes with similar expression levels can reveal the function of 

those which were previously uncharacterized (guilt-by-association). 

 

Second, coexpressed genes may reveal much about regulatory mechanisms. For example, if a 

single regulatory system controls two genes, then the genes are expected to be coexpressed. In 

general there is likely to be a relationship between coexpression and coregulation. 

 

Third, gene expression levels differ in various cell types and states. The interest is in how 

gene expression is changed by various diseases or compound treatments, respectively. For 

example one can investigate the differences in gene expression between a normal and a cancer 

cell [31-39]. 

 

Several clustering techniques were recently developed and applied to analyze microarray data. 

However, to the best of my knowledge, there is no single tool, which integrates the common 

clustering and visualization methods. Such a tool would be valuable for comparison and 

evaluation of clustering algorithms and their result and would help biologists to gain 

biological meaningful information out of microarray datasets in a less costly way. 

 

1.2 Conceptual formulation 
The aim of this work is the implementation and evaluation of several commonly used 

clustering algorithms for large-scale gene expression data. The program has to fulfill the 

following requirements: 

 

� Import and export of multiple experiment datasets from flat files 

� Graphical representation of the dataset in a user friendly and intuitive way 

� Tools for data adjustment to gain a best possible representation for further analysis 

� Facilitation of several distance measuring procedures 

� Implementation of Hierarchical Clustering, k-means Clustering, Self Organizing 

Maps (SOM), Principal Component Analysis (PCA) and Support Vector Machines 

(SVM) 

� 2 and 3-dimensional representation of the clustering results including the ability to 

export the results as images and data. 

 

To show the usefulness of clustering software programs all clustering algorithms will be 

evaluated by using a public available dataset and verifying the results with published 

knowledge gained from that dataset. 
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2.1 Data representation 

2.1.1 Expression matrix 
The relative expression levels of n genes, which may constitute almost the entire genome of 

an organism, are probed simultaneously by a single microarray. A series of m arrays, which 

are almost identical physically, probe the genome wide expression levels in m different 

samples - i.e., under m different experimental conditions. Let the matrix X, of size (n-genes x 

m-arrays), tabulate the full expression data, where xij is the log2 of the expression ratio of the 

ith gene in the jth sample as measured by the array j. The vector in the ith row of the matrix X 

lists the fluorescence ratio of the ith gene across the different samples, which correspond to 

the different arrays. The vector in the jth column of the matrix X, lists the genome wide 

fluorescence ratios measured by the jth array [40]. 

 

 
ij

ij
ij C

C
x

3
5

log2=  (2.1) 

 C5ij .......Cye-5 fluorescence measurement of gene i in microarray experiment j 

 C3ij .......Cye-3 fluorescence measurement of gene i in microarray experiment j 

 

 

xij is negative if C3>C5, 0 if C3=C5, and positive if C3<C5. In other words: xij is positive, if 

gene i in experiment j is over expressed, and negative if gene i in experiment j is under 

expressed relative to the control sample. 

 

2.1.2 Graphical representation 
Because the massive collection of numbers is difficult to assimilate, the primary data is 

combined with a graphical representation by representing each data point with a color that 

quantitatively and qualitatively reflects the original experimental observation, i.e. each data 

point xij is colored on the basis of the measured fluorescence ratio. This yields to a 

representation of complex gene expression data that allows biologists to assimilate and 

explore the data in a more intuitive manner [41]. 



CHAPTER 2   METHODS 
 

7 

In the literature used color scales range usually from saturated green (max neg. value) to 

saturated red (max. pos. value). Cells with log ratio of 0 (genes unchanged) are colored black, 

increasingly positive log ratios with reds of increasing intensity, and increasing negative log 

ratios with greens of increasing intensity. Missing values usually appear gray. 

 

However, the green/red color scheme is in many cases not necessarily the ideal choice. 

Colorblind persons for instance are not able to distinguish green and red colors. It is also very 

difficult to say if a very low expressed gene is over or under expressed (see first column of the 

matrix in Figure 2.1). To overcome these drawbacks, 5 additional color schemes have been 

implemented, each with better properties for a specific problem (Figure 2.1). 
            

 
(a) (b) 

 
(c) (d) 

 
(e) 

 
(f) 

Figure 2.1: 6 different graphical representations of the same primary data set (a) most 

common color scheme used in literature (b) alternative color scheme for color blind persons 

(c) more contrast at lower ratio levels (d) for better differentiation of over or under expressed 

genes at low ratio levels (e) better contrast for over expressed genes (f) false color 

representation of over expressed genes. Gray fields represent missing values. 

 

A second very important factor is the size of each data point in the graphical representation. 

This in turn depends on the purpose of the visualization, if the endeavor is to get a good 

overview of the data, or if a good detail view is favored (Figure 2.2).  

 

It seems that the human brain prefers rectangular structures with an aspect ratio of 

approximately 4 to 1. Structures and areas of interest are much easier to see, compared to a 
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data representation with square cells. The best general visibility is gained by using rectangular 

color cells (20x5 Pixels) in combination with a black raster for a better cell separation (Figure 

2.2b).  

 

In contrary, if detail information like accession numbers or general ORF descriptions have to 

be added to each gene for documentation purposes, the quadratic representation (10x10 

Pixels) as often used in publications provide the best results (Figure 2.2c). 

 

       
(a) (b) (c) 

Figure 2.2: dataset representation (a) 1x20 pixel cells for a good overview of the whole 

dataset (b) 20x5 pixel cells for a good general overview (c) 10x10 pixel cells for adding 

additional detail information like gene accession numbers or general ORF descriptions. 

 
If the experiments have a relation to each other like for example a temporal relationship, it is 

possible to plot the expression progression along different conditions for each gene. This 

makes of course no sense, if the experiments are independent from each other. If more than 

one gene is observed, two different kinds of plot representations of the data are common 

(Figure 2.3): 

 
First: Each gene is plotted separately.  This is a very intuitive and easy to read representation. 

However, if many genes are viewed simultaneously, it becomes very complex and general 

patterns are difficult to observe. 

 
Second: The mean and normalized standard deviation of all genes are plotted. This so-called 

centroid view is a less intuitive way of representing trends but it is easier to identify overall 

properties of complex data.  
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(a) (b) 

Figure 2.3: progression plots of gene expression values: (a) all genes are plotted with the 

magenta curve representing the mean over all expression values. (b) mean and normalized 

standard deviation of the genes in (a). 

 

2.2 Data adjustments 
Several data adjustment procedures are available and often used prior to statistical analysis of 

a given data set. It is important to know not only the mathematical background of these 

procedures, but also the effects such procedures can have on datasets based on biological 

observations. 

 

2.2.1 Logarithmic transformation 
Usually the data is already in logarithmic form as described in 2.1.1. If not all values xij’ in 

the data matrix can be processed in the following way: 

 

 ( )'2log ijij xy =    with e.g. 
ij

ij
ij C

C
x

3
5' =  (2.2) 

 
Almost all results from cDNA microarray experiments are fluorescence ratios. That means, 

that overexpressed genes are represented by a range of 1<xij<+∞, where underexpressed genes 

are represented by a range of 0≤ xij<1. To overcome this discrepancy the data is usually 

transformed into logarithmic space, where overexpressed genes are assigned to positive 

values and underexpressed genes are assigned to negative values (Figure 2.4). A second 

property of this transformation is that the data is represented in a more “natural” way. Let’s 
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consider an experiment where we are looking at gene expression over time, and the results are 

relative expression levels compared to time 0. Further assume a hypothetic gene is unchanged 

at time point 1 (x0=1.0), 2-fold over expressed at time point 2 (x1=2.0), and 2-fold 

underexpressed at time point three relative to time 0  (x2=0.5) (Figure 2.4). In normal space 

the difference between time point 1 and 2 is d01=+1.0, while between time point 1 and 3 it is 

d12=-0.5, so that for mathematical operations that use the difference between values, the 2-

fold up change is statistically twice as significant as the 2-fold down change. Usually, a 2-fold 

up and 2-fold down change are preferred to be of the same magnitude, but in an opposite 

direction. Therefore it is favored to calculating distances in logarithmic space, where y0=0, 

y1=1.0, y2=-1.0, d01=1.0, and d12=-1.0 [41]. In most cases the logarithmus dualis (log2) is used 

instead of log10 or logarithmus naturalis (ln), because of the better scaling and the more 

natural understanding of differences in terms of double and half. 
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Figure 2.4: (left) log2-transformation. (right) expression curve of a time series in normal 

(blue) and logarithmic space (magenta). 

 

2.2.2 Mean or median centering 
Here the mean or median will be subtracted form each data element: 

 

 iijij xxy −=      or  imedijij xxy ,−=  (2.3) 

 ∑
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=
n

j
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xx

x
 (2.4) 

 ix ….… mean of the vector xi 

 imedx , ... median of the ascending sorted vector x’i 

 

which means that the mean or median of a row will be zero (standardization around zero). 
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Many presently published experiment series consist of a large number of tumor samples all 

compared to a common reference sample made from a collection of cell-lines. Here each gene 

is represented by a series of ratio values that are relative to the expression level of that gene in 

the reference sample. Since the reference sample is usually independent from the experiment, 

the analysis is preferred to be independent from the gene expression observed in the reference 

sample, and that is exactly what is achieved by mean and/or median centering. After applying 

this procedure the values of each gene reflect the variation from some property of the series of 

observed values such as the mean or median (Figure 2.5).  

 

It makes less sense in experiments where the reference sample is part of the experiment, as it 

is in many time courses, or if it is important to know whether and how much a gene is over or 

under expressed and how fare genes are “apart” from each other, since this procedure tends to 

decrease distances between genes by moving expression patterns from each end of the scale 

toward the center (Figure 2.5). 
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Figure 2.5: (left) Expression patterns of 2 genes, one over expressed, one under expressed. 

(right) Expression patterns after mean centering: both curves are identical, i.e. the distance 

between them is 0. 

 

Centering the data for columns/arrays can also be used to remove certain types of biases, 

which have the effect of multiplying ratios for all genes by a fixed scalar. Mean or median 

centering the data in log-space has the effect of correcting these biases. However, since in 

clustering only distances between genes or experiments are used, absolute values play a less 

important role in the comparison of two genes/experiments. Therefore genes are classified as 

similar even if the fluorescence ratios are not the same in each experiment due to differences 

in RNA amounts, labeling efficiency and image acquisition parameters (Figure 2.6). 

 

Nevertheless, it is very important that the fluorescence ratios are normalized within one 

experiment, since a drift in the intensities within one slide yield to different distances for one 

and the same gene, depending on the location of the gene on the slide (Figure 2.7). 
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One way to keep track of differences between experiments is the use of housekeeping genes 

or external controls. These control genes are genes, which expression levels are invariant in 

respect of the investigated biological process, i.e. their expression levels should be the same in 

each experiment. Therefore they can be used for normalization procedures. 
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Figure 2.6: (left) 2 equal control genes with constant expression in an ideal (blue) and real 

(magenta) experiment series. (right) the distances between the two genes are the same, even 

though the absolute values are different. 

 

0 1 2 3 4 5 6 7 8 9 10
-5

-4

-3

-2

-1

0

1

2

3

4

5

Ex
pr
es
si
on

Experiment
0 1 2 3 4 5 6 7 8 9 10

-5

-4

-3

-2

-1

0

1

2

3

4

5

D
is
ta
nc
e

Experiment  
Figure 2.7: (left) two equal control genes with different expression values due to drifts within 

a slide (background, etc.). (right) the distance between the two control genes is not zero and 

depends on the drift within the experiment. 

 

 

2.2.3 Division by RMS/SD 
Here, all data elements are divided by a scalar factor, so that the root mean square (RMS) or 

the standard deviation (SD or σ) of a vector is 1. 
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The standard deviation and root mean square characterize the “width” or “variability” of the 

data. Dividing by the RMS and SD sets these respectively to ones for the genes of interest. 

This has the effect of amplifying weak signals and suppressing strong signals (Figure 2.8).  

 

However, that also means that if one signal is so weak, that it represents only noise, its 

amplitude is made comparable to strong signals since all signals are treated equally! Therefore 

this procedure, like mean/median centering, tends to “create” similarities. 
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Figure 2.8: (left) two different signals, one representing noise (blue) and one representing a 

strong signal (magenta). (right) after division by the standard deviation: both signals are 

treated equally, comparing noise with data. 

 

2.2.4 Discretization of data 
Some special distance measuring procedures, such as information entropy, require digital 

data. This is achieved by executing a discretization on the data set, where the analog data 

range is divided in equidistant steps (Figure 2.9).  
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Figure 2.9: (left) analog signal. (right) resulting signal after discretization. Since digital data 

is nonnegative, the signal is shifted into the positive range.  
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2.3 Similarity distances 

2.3.1 Introduction 
All clustering algorithms use a similarity measurement between vectors to compare patterns 

of expression. Usually an analog value representing the distance between two genes or 

experiments is computed by summing the distances between their respective vectors. How 

this value is normalized or how the distance is computed depends on the distance 

measurement used. There are dozens of algorithms available [42]. In the program described 

here, the use of the following similarity distance values is available:  

 

• Pearson correlation coefficient 
• Uncentered Pearson correlation coefficient 
• Squared Pearson correlation coefficient 
• Averaged dot product  
• Cosine correlation coefficient 
• Covariance 
• Euclidian distance 
• Manhattan distance 
• Mutual information 
• Spearman Rank-Order correlation 
• Kendall’s Tau 

 

as well as the absolute value of each distance measurement value. The first 9 are linear 

correlation coefficients whereas the last 2 are nonparametric or rank correlation coefficients 

[43]. 

 

2.3.2 Pearson correlation coefficient 
The linear or Pearson correlation coefficient [43] is the most widely used measurement of 

association between two vectors. Let x and y be n-component vectors for which we want to 

calculate the degree of association. For pairs of quantities (xi,yi), i=1,…,n the linear 

correlation coefficient r is given by the formula: 
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 x …… mean of the vector x 

 y …… mean of the vector y 

 

The value r lies between –1 and 1, inclusive, with 1 meaning that the two series are identical, 

0 meaning they are completely independent, and -1 meaning they are perfect opposites. The 

correlation coefficient is invariant under scalar transformation of the data (adding, subtracting 

or multiplying the vectors with a constant factor).  

 

That means, that using Pearson correlation coefficient has the same effect as using Euclidian 

distance (see 2.3.13) on standardized  (mean centered, unit-variance) data [44]! 

 

2.3.3 Uncentered Pearson correlation coefficient 
This is basically the same formula as above, except the mean is expected to be 0. 
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 x …… mean of the vector x 

 y …… mean of the vector y 

 

Curves with “identical” shape, but different magnitude have an uncentered correlation 

coefficient < 1, whereas the standard correlation coefficient in this case would be 1. If just the 

magnitude of the curve is important, then the uncentered correlation value is better. 

 

2.3.4 Squared Pearson correlation coefficient 
The squared Pearson correlation coefficient calculates the square of the Pearson correlation 

coefficient, so that negative values become positive.  
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 x …… mean of the vector x 

 y …… mean of the vector y 

 

If the correlation approaches –1, the squared Pearson will approach 1, i.e. a perfect match. In 

this way, samples or genes with an opposite behavior will be seen as identical. This is 

especially good for identifying reciprocal expression profiles (e.g. regulatory or inhibitory 

mechanisms). 

  

2.3.5 Averaged dot product  
The simplest measurement of association between two vectors is the inner product, also 

referred to as the scalar or the dot product [63]. The inner product between x and y is defined 

as the sum of products of components and can be modified by defining an adjusted or 

“average” value: 

 ∑
=

=
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i
ii yx

n
d

1

1
 (2.10) 

 

which is independent of the sample size n. 

 

2.3.6 Cosine correlation coefficient 
When a unit-free measure of association is required, the inner product can be standardized to 

yield a magnitude-free coefficient, which does not change when the variable is multiplied by a 

constant. In terms of vector components cosθ  can be expressed as [63]: 
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When θ = 0 both x and y lie on the same straight line and are thus linearly dependent.  For θ= 

90° the vectors are orthogonal, and in general –1 ≤ cosθ ≤ 1. This is similar to the average dot 

product, except that it has the effect of removing information on the amplitude of the 

centering. 

 

2.3.7 Covariance 
Both the inner product and the cosine correlation coefficient are dependent on the position of 

the coordinate axes. Since variances and covariance values [63] are defined as second 
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moments about the mean, however, they are invariant with respect to shifts of the axes 

effected by addition or subtraction of constants. 

 

 
( )( )∑

= −
−−=

n

i

ii

n
yyxxs

1 1
 (2.12) 

 

 x …… mean of the vector X 

 y …… mean of the vector Y 

 

Adding or subtracting constant numbers to the vectors does not alter the magnitude of the 

covariance, but multiplying by constants does. Covariance values are also independent of the 

sample size n, since the numerator is divided by n-1. 

 

 

2.3.8 Euclidian distance 
Euclidian distance [42] is a very commonly used distance measurement.  It is basically just 

the sum of the squared distances of two vector values (xi,yi). 
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Euclidian distance is variant to both, adding and multiplying all vectors with a constant factor. 

It is also variant to the dimension of the vector values, for example if missing values reduce 

the dimension of certain vectors. 

 

 

2.3.9 Manhattan distance 
Similar to the Euclidian distance, the Manhattan distance is the sum of the absolute distances 

of two vector values (xi,yi) on a compound by compound basis. 

 ∑
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 (2.14) 

 

Basically this is a linear version of the Euclidian distance, with the same advantages and 

disadvantages. 
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2.3.10 Spearman Rank-Order correlation 
Spearman rank correlation and Kendall’s Tau are nonparametric or rank correlations. The key 

concept of nonparametric correlation is this: If we replace the value of each xi and yi by the 

value of its rank among all the other xi ’s (yi ’s) in the sample, that is, 1, 2, 3, …... n, then the 

resulting list of numbers will be drawn from a perfectly known distribution function, namely 

uniformly from the integers between 1 and n, inclusive.  Nonparametric correlation is more 

robust than linear correlation and more resistant to unplanned defects in the data [42]. For 

more detailed information see [43]. 

 

2.3.11 Kendall’s Tau 
Kendall’s Tau is even more nonparametric than Spearman’s Rank correlation. Instead of 

using the numerical difference of ranks, it uses only the relative ordering of ranks: higher in 

rank, lower in rank, or the same in rank. 

 

Beware: This is an O(n2) algorithm. If Kendall’s Tau is computed for data sets of more than a 

few thousand points, some serious computing is required.  

 

For further information on Kendall’s Tau the reader is referred to [43].   

 

2.3.12 Mutual Information 
Mutual information [45-47], also referred to as rate of transmission, quantifies the reduction 

in the uncertainty of one random variable given knowledge about another random variable. In 

order to calculate the information entropy value of the vectors to compare, continuous data is 

transformed by binning the expression levels into log2(n) discrete, equidistant levels.  The 

information entropy H, of each gene expression series x, is calculated from the probabilities, 

P(bxi), of the occurrence of one of the log2(n) expression levels over the n measurement 

points: 

 

 ( ) ( ) ( )( )xi
b

xi bPbPH
xi

2log⋅−= ∑x  (2.15) 

 ( ) ( ) ( )( )yi
b

yi bPbPH
yi

2log⋅−= ∑y  (2.16) 

 ( )xH , ( )yH   …… information entropy of vector x, y 

 ( )xibP , ( )yibP …… probability of bin i of vector x, y 
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The joint entropy for each gene expression pair, H(x,y), is calculated analogously: 

 

 ( ) ( ) ( )( )yixi
bb

yixi bbPbbPH
yixi

,log, 2
,

⋅−= ∑yx,  (2.17) 

 

The mutual information of the two vectors x and y is determined according to the following 

definition: 

 ( ) ( ) ( ) ( )yxyxyx, ,HHHM −+=  (2.18) 

 

Since the degree of mutual information is dependent on how much entropy is carried by each 

gene expression vector, two gene expression vectors exhibiting low information entropies will 

also have low M, even if they are completely correlated. Therefore, M is normalized to the 

maximum entropy of each of the contributing vectors, giving a high value for highly 

correlated sequences, independent of the individual entropies.  

 

 ( ) ( )
( ) ( )[ ]yxmax

yx,yx,
HH

MM norm ,
=  (2.19) 

 

1-Mnorm is used as distance measure for the distance measurement, since maximum coherence 

must correspond to minimum distance. 

 

 ( ) ( )normMD yx,yx, −= 1  (2.20) 

 

2.3.13 Comparison 
For a better understanding of the effects of the various distance measurements, a Principal 

Component Analysis (PCA, see 2.8) of a sporulation dataset using all the methods described 

above has been calculated. The results are shown in Figure 2.10 and 2.11.  PCA has no 

random part in its calculation therefore results are reproducible and comparable. For that 

reason the results vary only because of the different distance measuring methods used. It is 

important to know that the principal components plotted in Figure 2.10 and 2.11 are 

Eigenvectors, so they can be multiplied with any real constant, including –1, which means a 

reflection of the PC curve in respect of the x-axis. It can easily be seen that different distance 

functions lead to different, but similar principal components. For that reason it is important to 

choose the best fitting distance measurement by answering the question, what similar should 

mean in respect of the used data, considering the properties of the different procedures 

described above. Which genes should be considered similar, which not. 
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Figure 2.10: Comparison of all mentioned distance measurement procedures using Principal Component 

Analysis of a yeast sporulation dataset. Plotted are: 2D-view of Principal Component 1 and 2, the 

Eigenvalue distribution and the first 3 Principal Components. 
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Figure 2.11: Comparison of all mentioned distance measurement procedures using Principal Component 

Analysis of a yeast sporulation dataset. Plotted are: 2D-view of Principal Component 1 and 2, the 

Eigenvalue distribution and the first 3 Principal Components. 

 

2.3.14 Missing values 
Due to various effects during spotting, hybridization, and data analysis, not each spot can be 

assigned a meaningful ratio. This results in missing values in the data matrix. To calculate 

distances, only elements represented in both vectors are used. If there is a missing value in 

one or both vectors, this dimension is not included in the distance calculation. This can lead to 

various problems: 

 

The greatest problems occur, if the distance is not independent of the number of vector 

elements n, as it is the case for Euclidian distance for instance. Vectors with missing values 

are then differently weighted in comparison with vectors with no missing values. Let’s say 

there are 3 genes: 
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1. A gene-vector with all values valid 

2. A gene-vector with all values present but not equal to 1. 

3. A gene-vector with only one value equal to the corresponding value of gene 1 

 

If vector 1 & 2 and 1 & 3 are compared, the following results are obtained: 

 

� 1 & 2: They are not similar so the distance is greater than 0 

� 1 & 3: Only values, which are present in both vectors, are used for the distance 

calculation, so the genes are treated similarly, because the only comparison results in 

distance 0. But vector 1 and 3 could also be completely different... 

 

For that reasons, missing values are difficult to handle. A few are usually no problem, but if 

there are too many in comparison to the number of vector-elements n, an arbitrary result can 

be expected. 

 

2.3.15 Underlying assumptions 
To calculate distances as described above, two major assumptions have to be fulfilled to get 

meaningful information: 

 

Any distance measurement provides a quantification of the linear relation between two 

random variables (measurements), x and y [44,48]. 

 

First, it is assumed that y is only related to a single variable x. In all but very simple systems, 

y depends not only on one, but on many input variables. For these systems, calculations of 

relations using distance measurements as described here are insufficient. However, restriction 

to these simple tests drastically reduces the calculations required to find relationships between 

expression patterns. The price of this speed is a lack of consideration of the ability of nature to 

make decisions based on multiple inputs. 

 

A second problem is the linearity assumption. The best linear calculated relation might be 

poor, whereas there may be good nonlinear relations. Finding nonlinear relationships in large 

amounts of data is not trivial and will require years of research in the mathematical 

background of gene expression clustering. 

 

However, the results obtained by clustering methods using these distance measurements 

demonstrate that such procedures are a useful way to extract and visualize one-to-one 

correlations from large datasets [48]. 
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2.4 Clustering introduction 
There are two straightforward ways how gene expression matrices can be studied [19]: 

 
� Comparing expression profiles of genes by comparing rows in the expression matrix and 

� Comparing expression profiles of experiments by comparing columns in the matrix. 

 
Additionally, if the data normalization allows it, a combination of both are possible. We can 

look either on similarities or differences. If two genes (rows) are similarly expressed, we can 

hypothesize that the respective genes are co-regulated and possibly functionally related (Guild 

By Association) [49]. The comparison of experiments can provide us with the information, 

which genes are differentially expressed in two conditions and this enables us to study, for 

example, effects various compounds have on an investigated condition. 

 

Clustering can be defined as the process of separating a set of objects into several subsets on 

the basis of their similarity [50]. The aim is generally to define clusters that minimize 

intracluster variability while maximizing intercluster distances, i.e. finding clusters, which 

members are similar to each other, but distant to members of other clusters in terms of gene 

expression based on the used similarity measurement. Two clustering strategies are possible: 

supervised (based on existing knowledge) or unsupervised. 

 

 
 

Figure 2.12: Supervised and unsupervised data analysis. In the unsupervised case (left) we 

are given data points in n-dimensional space (n=2 in the example) and we are trying to find 

ways how to group together points with similar features. For instance, there are three natural 

clusters in the example, each consisting of data points close to each other in a sense of 

Euclidean distance. A clustering algorithm should identify all these clusters. In the supervised 

case (right), the objects are labeled (e.g. we have magenta and blue points in the example), 

and the task is to find a set of classification rules allowing us to discriminate between these 

points as precisely as possible. For instance, the dotted line in the drawing [19]. 
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2.5 Hierarchical Clustering 

2.5.1 Introduction 
Hierarchical clustering [21,51-53] is an unsupervised procedure of transforming a distance 

matrix, which is a result of pair wise similarity measurement between elements of a group, 

into a hierarchy of nested partitions. The hierarchy can be represented with a tree-like 

dendrogram in which each cluster is nested into the next cluster.  Hierarchical algorithms can 

be further categorized into two kinds: 

 

(1) Agglomerative procedures: This procedure starts with n clusters (each object forms a 

cluster containing only itself) and iteratively reduces the number of clusters by merging 

the two most similar objects or clusters, respectively, until only one cluster is remaining. 

(n → 1). 

 

(2) Divisive procedures: This procedure starts with 1 cluster and iteratively splits a cluster, so 

that the heterogeneity is reduced as far as possible (1 → n). 

 

If it is possible to find a reasonable distance definition between clusters, agglomerative 

procedures are less computationally expensive than divisive procedures, since in one step two 

out of maximum n elements have to be chosen for merging, whereas in divisive procedures, 

fundamentally all subsets have to be analyzed so that divisive procedures have an algorithmic 

complexity in the magnitude of O(2n). Agglomerative procedures have the drawback, that an 

incorrect merging of clusters in an early stage often yields results, which are far away from 

the real cluster structure. Divisive procedures immediately start with interesting cluster 

arrangements and are therefore much more robust. Usually agglomerative procedures are used 

because of their efficiency. 

 

2.5.2 Algorithm 
The procedures of agglomerative hierarchical clustering execute the following basic steps: 

 

(1) Calculate the distance between all objects and construct the similarity distance matrix. 

Each object represents one cluster, containing only itself. 

(2) Find the two clusters r and s with the minimum distance to each other. 
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(3) Merge the clusters r and s and replace r with the new cluster. Delete s and recalculate all 

distances, which have been affected by the merge. 

(4) Repeat step (2) and (3) until the total number of clusters become one. 

 

2.5.3 Amalgamation or linkage rules 
At the first step, when each object represents its own cluster, the distances between those 

objects are defined by the chosen distance measure. However, once several objects have been 

linked together, a linkage or amalgamation rule is needed to determine if two clusters are 

sufficiently similar to be linked together. There are numerous linkage rules that have been 

proposed. Here are some of the most commonly used: 

 

Single linkage (nearest neighbor) 

In this method the distance between two clusters is determined by the distance of the two 

closest objects (nearest neighbors) in the different clusters. If there are several equal minimum 

distances between clusters during merging, single linkage is the only well defined procedure. 

Its greatest drawback is the tendency for chain building: Only one (random) small distance is 

enough to enforce the amalgamation of two otherwise very different clusters. Therefore, the 

resulting clusters tend to represent long "chains" (Figure 2.13a). 

 

Complete linkage (furthest neighbor) 

In this method, the distances between clusters are determined by the greatest distance between 

any two objects in the different clusters (i.e., by the "furthest neighbors"). Complete linkage 

usually performs quite well in cases when the objects actually form naturally distinct data 

clouds in the multidimensional space. If the clusters tend to be somehow elongated or of a 

"chain" type nature, then this method is inappropriate. Since only one (random) large distance 

is enough to pretend two clusters from merging, clusters tend to be small and merged together 

very late with a great error value. 

 

Unweighted pair-group average linkage 

In this method, the distance between two clusters is calculated as the average distance 

between all pairs of objects in the two different clusters. This method is very efficient when 

the objects form natural distinct "clumps," however, it performs equally well with elongated, 

"chain" type clusters. Since the distance between two clusters lies between the minimum 

formation of single linkage and the maximum formation of complete linkage this procedure 
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empirically shows no tendencies to either extreme described above, and is therefore more 

stable to unknown data point distributions. Admittedly, if there are several equal distances, 

the sequence of the amalgamation is critical. Note that the abbreviation UPGMA is used as 

well to refer to this method as unweighted pair-group method using arithmetic averages. 

 

Weighted pair-group average linkage 

This method is identical to the unweighted pair-group average method, except that in the 

computations, the size of the respective clusters (i.e., the number of objects contained in 

them) is used as a weight. Thus, this method (rather than the previous method) should be used 

when the cluster sizes are suspected to be greatly uneven.  

 

Unweighted pair-group centroid linkage 

The centroid of a cluster is the average point in the multidimensional space defined by the 

dimensions. In a sense, it is the center of gravity for the respective cluster. In this method, the 

distance between two clusters is determined as the difference between centroids. 

 

 

       
(a) (b) (c) 

 

Figure 2.13: Dendrogram representations of Hierarchical Clustering using the amalgamation 

rules of: (a) single linkage (b) complete linkage (c) unweighted average linkage clustering. 
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Weighted pair-group centroid linkage 

This method is identical to the previous one, except that weighting is introduced into 

computation to take into consideration differences in cluster sizes. 

 

Ward's method 

This method is distinct from all other methods because it uses an analysis of a variance 

approach to evaluate the distances between clusters. This method attempts to minimize the 

Sum of Squares of any two (hypothetical) clusters that can be formed at each step. In general, 

this method is regarded as very efficient and tends to create equally sized clusters of small 

size.  

 

2.5.4 Properties 
Hierarchical clustering is the most commonly used clustering strategy for gene expression 

analysis at the moment. The biggest advantage is that aside from a choice of the 

amalgamation rule and the type of similarity distance measurement, no further parameters 

have to be specified. The result is a reordered set of genes and/or experiments, where similar 

vectors are close to each other in the tree structure and the distance between vectors and 

clusters is encoded in the branch length of a subtree. This not only allows estimation of the 

similarity of neighboring genes, but also of the distance between distant vectors. This is 

helpful if someone is more interested in distances rather than similarities between two or more 

investigated conditions. 

 

Hierarchical clustering just rearranges the dataset to a new, better ordered set of data vectors, 

therefore clusters have to be specified by the user by selecting a subtree as a cluster. A second 

drawback is the computational complexity. Large datasets are difficult or impossible to 

calculate due to the vast amount of necessary memory for the similarity matrix and the 

calculation time needed. Datasets with more than 20.000 vectors are manageable just by very 

advanced computer hardware.  

 

The software discussed in this paper is able to calculate Single Linkage, Complete Linkage 

and Unweighted Average Linkage Clustering on both the genes and the experiments. 
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2.6 Self Organizing Maps 

2.6.1 Introduction 
One of the most popular neural network models today is the principle of a Self-Organizing 

Map (SOM) [54-58], developed by professor Kohonen at the University of Helsinki. A SOM 

is basically a multidimensional scaling method, which projects data from input space to a 

lower dimensional output space. The SOM algorithm is based on unsupervised competitive 

learning, which means that the training is entirely data-driven and needs no further 

information. 

 

A SOM is formed of neurons located in a regular, usually 1- or 2-dimensional grid. Each 

neuron i of the SOM is represented by an n-dimensional weight or reference vector 

mi=[mi1,…,min]T, where n is equal to the dimension of the input vectors.  

 

The neurons of the map are connected to adjacent neurons by a neighborhood relation 

dictating the structure of the map. Usually the map topology is rectangle or hexagonal (Figure 

2.14). The number of neurons determines the granularity of the resulting mapping, which 

affects the accuracy and the generalization capability of the SOM. 

 

 

 
 

 (a) Hexagonal grid (b) Rectangular grid 

 

Figure 2.14: In the 2-dimensional case the neurons of the map can be arranged either on a 

rectangular or hexagonal lattice. Neighborhoods (size 1, 2 and 3) of the unit marked with 

black dot. 
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2.6.2 Initialization 
In the basic SOM algorithm, the topological relations and the number of neurons are fixed 

from the beginning. The number of neurons should be the number of clusters expected, with 

the neighborhood size controlling the smoothness and generalization of the mapping.  

 

Before the training phase, initial values are given to a weight vector, defined for each neuron 

The SOM is robust regarding the initialization, but properly accomplished, it allows the 

algorithm to converge faster to a better solution. The two following initialization procedures 

are used: 

 

� Random initialization, where the weight vectors are initialized with small random 

values between the minimum and maximum values of the vector. 

� Random Gene initialization, where the weight vectors are initialized with random 

sample vectors from the training dataset. 

 

 

2.6.3 Training 
In each training step, one sample vector x from the input data set is chosen randomly and a 

similarity measurement is calculated between it and all the weight vectors of the map. The 

Best-Matching unit (BMU), denoted as c, is the unit whose weight vector has the greatest 

similarity with the input sample x. The similarity is usually defined by means of a distance 

measurement, typically Euclidian distance. Formally the BMU mc is defined as the neuron for 

which 

 

 

 || x – mc || = min{|| x – mi ||}, (2.21) 

i 

 

 

where || . || is the distance measure. 

 

After finding the BMU, the weight vectors of the SOM are updated. The weight vectors of the 

BMU and its topological neighbors are moved closer to the input vector in the input space. 

This adaptation procedure stretches the BMU and its topological neighbors towards the 

sample vector (Figure 2.15).  
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(a) (b) 

 

Figure 2.15: (a) Update of the best matching unit (BMU) and its neighbors towards the input 

sample marked with x. The solid and dashed lines correspond to the situation before and after 

updating, respectively. The lines show the neighborhood relations. (b) Adaptation of the SOM 

to the input space after several iterations. 

 

The SOM update rule for the weight vector of the unit i is: 

 

 mi(t+1) = mi(t) + hci(t)[x(t) – mi(t)], (2.22) 

 

where t denotes time. The x(t) is the input vector randomly drawn from the input data set at 

time t and hci(t) is the neighborhood kernel around the winner unit c at time t. 

 

Only the weight vectors in a specific area around the BMU are updated. The neighborhood 

function specifies the size of the area and therefore the number of vectors that are updated in a 

training step. It defines the region of influence that the input sample has on the SOM. The 

neighborhood kernel is a non-increasing function of time and distance of unit i from the 

winner unit c.  The kernel is formed of two parts: the neighborhood function h(d, t) and the 

learning function α(t): 

 

 hci(t) = α(t) ⋅ h( || rc – ri || , t) (2.23) 

 

where ri is the location of unit i on the map grid. 

 

The simplest neighborhood function is the bubble: It is constant over the whole neighborhood 

of the winner unit and zero elsewhere. The second is the Gaussian neighborhood function 

(Figure 2.16). 
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The latter gives slightly better results but is computationally somewhat heavier. The 

neighborhood radius starts at its initial value and is decreasing linearly to one, during the 

training. 

 

 
(a) (b) 

 

Figure 2.16: The two basic neighborhood functions: (a) Bubble neighborhood. (b) Gaussian 

neighborhood 

 

The learning rate α(t) is a decreasing function of time. Usually a linear function is used. 

 

During training, the SOM behaves like a flexible net that folds onto the point clouds formed 

by the training data (Figure 2.15b).  

 

The training is terminated after a predefined number of steps has been performed. 

 

An important property of the SOM is, that it can be used even on partial data, or data with 

missing data component values. If the sample input vector on a specific training step has 

missing components, they are simply left out from the distance calculation and updating 

procedure. The algorithm remains statistically valid, until the number of missing components 

in the vector is too big. 

 

2.6.4 Clustering 
The SOM partitions the input space into convex Voronoi regions, each of which corresponds 

to one unit of the map. The Voronoi region of a map unit i is defined as the union of all input 

vectors x to which it is the closest: 

 

 Vi = { x |  ||mi – x|| < ||mj – x||, i ≠ j }. (2.24) 
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That means that the input vectors can be clustered according to their Voronoi regions. Each 

Voronoi region is one cluster consisting of very similar vectors. It also denotes, that the 

number of clusters has to be estimated prior to calculation, because it depends only on the 

number of nodes in the SOM. This is one of the major drawbacks of the SOM. 

 

2.6.5 Visualization 
Clusters are groups of vectors, which are close to each other compared to their distance to all 

the other vectors. Therefore, the clustering structure of a SOM can be visualized by displaying 

distances between vectors. The most common method is the unified distance matrix (u-

matrix). 

 
In the u-matrix method, a matrix of distances between the weight vectors of a map unit and 

their neighbors is calculated. By showing this matrix as a gray-level image, the relative 

distances between adjacent map units on the whole map can be seen. This representation gives 

information about the distances between neighboring clusters in the SOM.  

 
The method of Kraaijveld uses only one value per map unit: In our case the maximum of 

distances between the unit (SOM vector) and its cluster vectors (Figure 2.17). The distances 

are normalized in respect of the maximum distance in all clusters. This representation gives 

information about the integrity or “size” of a cluster. In the program described here only this 

representation is calculated. 

 

  
(a) (b) 

Figure 2.17: Kraaijveld representation of a 10x10 SOM. (a) The maximum distance between 

a unit and its cluster vectors is coded in gray-levels. The greatest cluster size is represented 

by black, the smallest by white fields. If a cluster has no members it is colored blue. (b) Same 

SOM as in (a) but here the distance is represented in respect of the greatest cluster (left, 

lower corner). Gray fields represent empty clusters. 
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2.6.6 Properties 
Some of the properties have already been discussed above. It is a robust clustering procedure, 

and the results can easily be visualized for a better understanding of how “good” a cluster is. 

 

One of the biggest advantages of the SOM algorithm are the moderate memory and time 

consumption, although distances must be calculated at each step, since no similarity distance 

matrix is needed, the memory requirement rises only with O(n). The calculation time is 

determined by the net size and the number of iterations until the algorithm is terminated. 

Usually the network fits quickly to the data distribution in the multidimensional space and 

only a few seconds of calculation are required for a good result. It is also possible to calculate 

a rough result first to test some parameter effects, and calculate the final result after the best 

parameters have been found. Important with this approach is, not to forget the random part of 

the algorithm; a certain amount of calculation is required to get meaningful, comparable 

results. However, since there is no specific termination criterion, it is led to the user to decide 

how many iterations have to be calculated.  

 

This indicates maybe the most significant drawback of the SOM algorithm: It requires the 

specification of many parameters: 

 

� The dimension in X and Y of the map (number of clusters) 

� The number of iterations 

� The initial learning rate α 

� The neighborhood radius 

� The type of neighborhood function 

� The type of vector initialization prior to training 

� The topology of the map 

 

It is sometimes difficult or impractical to test all possibilities, however, usually the default 

values (see 3.3) yield to good results and changing parameters, like learning rate and 

neighborhood radius, do not change the result significantly. Important are the net dimensions 

(number of clusters) and the number of iterations. 

 

SOM also possesses the ability to create fuzzy clusters, where one vector can belong to more 

than one cluster, but this requires one more input from the user, namely the radius of the area 

around each SOM-vector that belongs to it. The implementation of the SOM-algorithm 

discussed in this paper does not have the feature of determining fuzzy clusters yet. 
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2.7 k-means clustering 

2.7.1 Introduction 
k-means [59-62] is a commonly used clustering method because it is based on a very simple 

principle and provides good results. It is very similar to SOM, unsupervised, and can be seen 

as a Bayesian (maximum likelihood) approach to clustering.  

 

The basic idea is to maintain two estimates:  

 

(1) An estimate of the center location for each cluster and 

(2) A separate estimate of the partition of the data points according to which one goes into 

which cluster.  

 

One estimate can be used to refine the other. If we have an estimate of the center locations, 

then (with reasonable prior assumptions) the maximum likelihood solution is that each data 

point should belong to the cluster with the nearest center. Hence, we can compute a new 

partition from a set of center locations, i.e. make one cluster from the set of vectors in each 

Voronoi cell.  

 

For this reason, the k-means algorithm proceeds by a sequence of phases in which it alternates 

between moving data points to the cluster of the nearest center, and moving all cluster centers 

to the mean of their Voronoi sets. 

 

 

2.7.2 Clustering  
Let X={x1, x2, … , xn} denote a set of n vectors and xi={xi1, xi2, …., xim} be a vector 

represented by m attribute values. Let k be a positive integer. The objective of clustering X is 

to find a partition, which divides the objects in X into k disjoint clusters. 

 

For a given n, the number of possible partitions is definite but extremely large. It is 

impractical to investigate every partition in order to find the optimal one. A common solution 

to this problem is to choose a clustering criteria or cost function to guide the search for a 

better partition. 
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Cost function 

One widely used cost function is the trace of the within cluster dispersion matrix, which can 

be defined as 

 ( )∑∑
= =

=
k

j

n

i
jiijdyE

1 1

,qx  (2.25) 

 

Here, qj=[qj1, qj2, … , qjk]  is the representative vector or prototype for cluster i. In k-means 

the prototype qj is the mean of all vectors xi in a specific cluster. d(xi,qj) is a similarity 

measure between qj and xi and finally yij is an element of a partition Matrix Y.  

 

Y has the following two properties: 

 

(1) 0 ≤ yij ≤ 1 and  (2.26) 

(2) 1
1

=∑
k

ijy   (2.27) 

 

Y is called a hard partition if yij∈{0,1}. Otherwise it is a fuzzy partition. In a hard partition, 

yij=1 indicates that object xi is assigned to cluster j by Y. In this paper only hard partitions are 

considered. 

The inner term ( )∑
=

n

i
jiijdy

1
,qx  in Eq. (2.25) is the total cost of assigning xi to cluster j, i.e. 

the total dispersion of objects in cluster j from prototype qj. 

 

Algorithm 

The essence of the k-means clustering algorithm is now to minimize the cost function of all 

clusters by executing the following steps: 

 

(1) Put each vector xi of X in one of the k clusters. 

(2) Calculate the mean for each of the k clusters. 

 

(3) Calculate the distance between an object and the mean of a cluster. 

(4) Allocate an object to the cluster whose mean is the nearest to the object. 

(5) Re-calculate the mean of the clusters affected by the reallocation. 

 
(6) Repeatedly perform the operations (3) to (5) until no more reallocations occur. 
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2.7.3 Properties 
The k-means algorithm has the following important properties: 

 

It is efficient in processing large data sets, due to the fact that the computational complexity of 

the algorithm is O(tkmn), where n is the number of vectors in X, m is the dimension of the 

vectors xi, k is the number of clusters and t is the number of iterations over the whole data set. 

Usually, k, m, t << n. It takes usually just a few seconds to calculate even datasets with 10000 

elements and more, making it a valuable tool for the investigation of datasets that are too big 

for hierarchical clustering for instance. 

 

Another big advantage is the moderate memory requirement for k-means clustering. Since 

there is no similarity matrix to calculate the memory requirements rise with O(n).  

 

The clusters have convex shapes. Therefore, it is difficult to use the k-means algorithm to 

discover clusters with non-convex shapes 

 

It often terminates at a local optimum. To find the global optimum, techniques such as 

deterministic annealing and generic algorithms can be incorporated with the k-means 

algorithm. 

 

The major drawback of the k-means algorithm is that the number of clusters has to be 

specified in advance. However, this is the only input needed for the clustering besides an 

abortion criterion to prevent infinite calculation, like an input for the maximum number of 

iterations to compute. 

 

Some variants like the ISODATA algorithm include a procedure to search for the best k at the 

cost of performance and therefore overcome the problem of estimating k. However, in this 

paper we concentrate on the standard k-means implementation. 

 

An additional advantage of k-means is the possibility to create fuzzy clusters, where one 

vector can belong to more than one cluster. This is a better model for the regulatory system 

that controls gene expression in a cell. One gene affects more than one other gene, i.e. it can 

be part of many different pathways and therefore has to belong to different clusters or no one. 
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2.8 Principal Component Analysis 

2.8.1 Introduction 
Principal Component Analysis (PCA), also known as Singular Value Decomposition (SVD) 

[63-65] is an exploratory multivariate statistical technique that allows the identification of key 

variables (or combinations of variables) in a multidimensional data set that best explain the 

differences between observations. Given m observations (experiments) on n variables (genes), 

the goal of PCA is to reduce the dimensionality of the data matrix by finding r≤n new 

variables. These r principal components account together for as much of the variance in the 

original n variables as possible while remaining mutually uncorrelated and orthogonal. The 

goal is to reduce dimensionality while filtering noise in the process, making the data more 

accessible for visualization and analysis.  

 

2.8.2 Mathematical background 
Consider m observations on n random variables represented by the matrix X. D is a distance 

matrix of the input matrix X. Let P denote a (m x m) matrix of unknown coefficients such that 

the quadratic form PTDP is maximized subject to the constraint PTP = I. This is equivalent to 

maximizing the Lagrangean expression 

 

 ΦΦΦΦ = PTDP - λI(PTP – I) (2.28) 

 

where λI is a diagonal matrix of Lagrange multipliers (Eigenvalues). Differentiating with 

respect to P and setting the equation to zero we are receiving 

 

 0P2D2
P

=−=
∂
Φ∂ λ  (2.29) 

or 

 (D-λI)P=0 (2.30) 

 

The normal equations in (2.30) yield estimates for Eigenvalues and Eigenvectors. To compute 

the principal components, the m Eigenvalues and their corresponding Eigenvectors are 

calculated from the (m x m) distance matrix D using for example Singular Value 

Decomposition (SVD). When D is nonsingular, all latent roots are strictly positive and each 

Eigenvector defines a principal component. 
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SVD methods are based on the following theorem of linear algebra: Any (n x m) matrix A 

whose number of rows n is greater than or equal to its number of columns m, can be written as 

the product of a (n x m) column-orthogonal matrix U, a (m x m) diagonal matrix W with 

positive or zero elements (the singular values), and the transpose of an (m x m) orthogonal 

matrix V. 

 

 A = UWVT (2.31) 

 

SVD now explicitly constructs orthonormal bases for the nullspace and range of a matrix. 

Specifically, the columns of U whose same-numbered elements wj are nonzero are an 

orthonormal set of basis vectors that span the range; the columns of V whose same-numbered 

elements wj are zero are an orthonormal basis for the nullspace. 

 

The matrices U and V are each orthogonal in the sense that their columns are orthonormal. 

 

 UTU = VTV = VVT = I (2.32) 

 

The vectors of U contain our Eigenvectors and the diagonal elements of W contain the 

corresponding Eigenvalues. Now the Eigenvectors of U are ordered regarding the value of 

their corresponding Eigenvalues. Each Eigenvector defines a principal component. Principal 

Component 1 (PC1) is the Eigenvector with the greatest Eigenvalue; PC2 is the Vector with 

the 2nd largest Eigenvalue and so on. 

 

The new ordered U matrix is the requested matrix P of equation (2.30); W contains the 

Eigenvalues of λI. 

 

Since U is an orthonormal matrix, it can be seen as a Transformation matrix, which 

transforms a vector from the input space into the space spanned by the Principal Components. 

 

 Y = XU (2.33) 

 

Each component can be viewed as a weighted sum of conditions, where the coefficients of the 

Eigenvectors are the weights. The projection of gene i along the axis defined by the jth 

principal component is: 

 ∑
=

=
m

t
tjitij uxy

1

 (2.34) 
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Where utj is the tth coefficient for the jth principal component; xit is the expression 

measurement for gene i under the tth condition. Y represents the data in terms of principal 

components and is a rotation of the data from the original space of observations to a new 

space with principal component axes (PC Space). 

 

The variance accounted for by each of the components is its associated Eigenvalue; it is the 

variance of a component over all genes. Consequently, the Eigenvectors with large 

Eigenvalues are the ones that contain most of the information; Eigenvectors with small 

Eigenvalues are uninformative. 

 

 

2.8.3 Visualization 
Each variation of a gene can be written exactly as a linear combination of these m 

characteristic principal components. Let’s say, we have the following 3 principal components: 
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We can now use a 3-dimensional coordinate system, where the x-axis represents the Principal 

Component 1, the y-axis PC2 and the z-axis PC3. Plotted in this space are the rotated gene 

expression data points yij. The position of yij in Principal Component Space gives us 

information of with patterns the specific gene expression observation consists (Table 2.1). 

 

That in turn means that points near to each other in the Principal Component Space are 

composed of the same basic patterns and are therefore similar in gene expression.  

 

On the contrary, if two points are far apart from each other in the 3D-space, then they are not 

similar to each other in gene expression. If we use PCA to analyze experiments instead of 

genes, we can conclude that spatially distant experiments are not similar to each other and 

therefore represent distinct physical conditions.  
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Description Gene Expression Point in PC Space 
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Table 2.1: Examples of gene expression curves composed of the basic patterns described in 

the first column and their location in PC Space. 

 

2.8.4 Properties 
Principal Component Analysis can be used to retrieve the basic patterns of gene expression 

contained in a given study. It eliminates the noise part of the dataset and concentrates on the 

most variant aspects of the investigated observation.  

 

PCA can also be applied to study clusters of genes from other calculations in PC space. If the 

clusters are well self-contained, they are usually better than clusters that are spread across the 

PC Space. 

 

It has to be mentioned at this place, that normalizing data adjustments remove a lot of the 

variation in the dataset and therefore impair the PCA. Normalization tends to project the 

genes/experiments on a circular or spherical shape in the PC Space. 

 

Since this is an exact mathematical calculation, no parameters have to be specified. 
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2.9 Support Vector Machines 

2.9.1 Introduction 
Every of the clustering approaches we have discussed so far attempts to identify functionally 

significant classifications of genes in an unsupervised fashion. A learning method is 

considered unsupervised if it learns in the absence of a teacher signal. In contrast, Support 

Vector Machines (SVM) [66-70] uses a training set to specify in advance, which data should 

cluster together. It is therefore referred to as a supervised clustering method.  

 

Let’s assume there is a set of genes that share a common function or are part of the same 

pathway. In addition, a separate set of genes that are known not to be members of the 

investigated functional group or pathway is specified. These two sets of genes are combined 

to form a set of training examples, in which the genes are labeled positively, if they are in the 

studied functional class and are labeled negatively if they are known to be not in this 

functional class. 

 

Using this training set, an SVM is able to learn to discriminate between the members and non-

members of a given functional class. Having learned the expression features of the class, the 

SVM can recognize new genes as members or as non-members of the class based on their 

expression data. The SVM can also be reapplied to the training examples to identify outliers 

that may have previously been assigned to the incorrect class in the training set. Thus, an 

SVM uses the biological information in the investigators training set to determine what 

expression features are characteristic of a given functional group and use this information to 

decide whether any given gene is likely to be a member of the group or not (Figure 2.18).  

 

SVMs are very helpful if only a fraction of the genes in an organism is functionally annotated. 

This information can be used to train a SVM to recognize and classify additional genes. In 

this scenario a subset of known genes of related function is set to be positive, the genes not 

part of this class are defined negative. After the SVM classifies the annotated genes correctly, 

the trained model can then be used to find possible candidates in the unknown set of genes, 

which are functionally related to the positive training examples. 

 

SVMs have been proven to be superior to other neural network classification approaches such 

as Fisher’s linear discriminant, Parzen windows, and decision tree learners [67]. 
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 (a) (b) 

 
 (c) 

 

Figure 2.18: An untrained support vector machine (a) is trained with positive examples 

(green) and negative examples (red) to build a trained machine (b) that can take an unknown 

object (white) and determine whether or not it is similar to the training set. For functional 

classification of microarray data, positive and negative examples are drawn from annotations 

of coding regions in genome sequence data (c) [66]. 

 

Each vector x of the gene expression matrix can be seen as a point in a m-dimensional space 

(later referred to as input space), where m is the number of elements in x. A binary classifier 

can be built by constructing a hyperplane that separates class members (positive examples) 

from non-class members (negative examples) in this space (Figure 2.19). Unfortunately, real-

world problems often contain nonseparable data, so that it is often not possible to find a 

hyperplane in the input space, which classifies all examples correctly. However, SVM possess 

the ability to transform the input space non-linearly into a higher dimensional feature space.  

In this feature space it is theoretical trivial to find a linear optimal separating hyperplane. A 

hyperplane is called optimal, if it separates all training vectors without error and the distance 

between the closest vectors to the hyperplane is maximal. 

 

 

 

Figure 2.19: A SVM tries to find an optimal

hyperplane that separates all training samples

correctly and maximizes the margin (maximizes the

distance between it and the nearest data point of

each class). If this is not possible in the input space

(for example in 2 dimensions) a hyperplane can be

found in the higher dimensional feature space (e.g.

3D-space) [66]. 

  



CHAPTER 2   METHODS 
 

 
43 

2.9.2 Kernel Function 
The main problem that arises with this approach is how to handle the problem of mapping all 

vectors from the input space into feature space. This mapping would generate high 

dimensional vectors entailing large storage and computational expense. However, since it 

turns out that just the dot-product of two vectors in feature space is required [68,69], the 

problem can be solved by introducing a so called kernel-function that describes the dot-

product in feature space without ever representing the space explicitly. In other words; the 

idea of the kernel function is to enable operations to be performed in the input space rather 

than the potentially high dimensional feature space. There are more than a dozen of different 

kernel functions available [69]. 

 

 
 
Figure 2.20: Mapping of m-dimensional input space into k-dimensional feature space, where 

k≥m. The classification is calculated in feature space and yields to a result y∈{1,-1} for 

positive or negative classification.  

 

If we choose a mapping from the original space X into higher-dimensional space Z (k:X→Z), 

 

 k(x) = z (2.35) 

 

where x∈X and z∈Z, the classifier that decides whether a vector is part of the positive or 

negative side of the hyperplane only needs the vectors in input space and their dot-product in 

the feature space [68,69]. For that reason we do not have to know k(x) as long as we know  

 

 K(x,y) = k(x)⋅k(y) (2.36) 

 

Depending on the kernel function used, different kinds of SVMs can be facilitated. Among 

acceptable mappings are polynomials, radial basis functions and certain sigmoid functions. 
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Polynomial Kernel 

A polynomial mapping is a popular method for non-linear modeling: 

 

 ( ) ( )dK yxyx ⋅=, or  (2.37) 

 ( ) ( )( )dK 1, +⋅= yxyx  (2.38) 

 d = 1, … 

 

Gaussian Radial Basis Kernel 

Radial basis functions have received significant attention, most commonly with a Gaussian of 

the form, 

 ( )












 −
−= 2

2

2
exp,

σ
yx

yxK  (2.39) 

σ Is the width of the Gaussian 

  

2.9.3 The generalized optimal separating hyperplane 
So far the discussion has been restricted to the case where the training data is linearly 

separable. However, in general this will not be the case. For some data sets, the SVM may not 

be able to find a separating hyperplane in feature space, either because the kernel function is 

inappropriate for the training data or because the data contains mislabeled training vectors. 

The latter problem can be addressed by using a soft margin that allows some training 

examples to fall on the wrong side of the separating hyperplane [68,69]. 

 

2.9.4 Properties 
The software described in this paper is able to calculate SVM with Polynomial and Radial 

Kernels. The biggest problem with SVM is the specification of all necessary parameters. It is 

often very difficult to choose the right kernel and find the best kernel-parameters. Different 

parameters yield to completely different classifications and different distance measurements 

need different kernel parameters to get correct classifications. It is therefore necessary to 

iteratively increase the kernel complexity, until the desired classification precision is reached.  

 

Very high kernel orders on the contrary tend to artificially separate the data and may expose 

the learning system to the risk of finding trivial solutions that overfit the data. 
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2.10 Programming tools  

2.10.1 Introduction 
Java (Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303 USA, 

www.sun.com) has been chosen as programming language. Additionally to the Java 2 

Software Development Kit (SDK), Standard Edition Version 1.3.0, the Java 3D API Version 

1.2 (Sun Microsystems) has been used for the three-dimensional representation of PCA 

results. For the program development the integrated development environment (IDE) JBuilder 

(Inprise Corporation, 100 Enterprise Way, Scotts Valley, CA 95066 USA) has been used. 

 

2.10.2 Java 
Java technology is both a programming language and a platform [71]. 

 

Java Programming Language 

The Java programming language is a high-level language that can be characterized by all of 

the following buzzwords [72]:  

 

� Simple 

� Architecture-neutral 

� Object-oriented 

� Portable 

� Distributed 

� High-performance 

� Interpreted 

� Multithreaded 

� Robust 

� Dynamic 

� Secure 

   

In the Java program language a program is first compiled into an intermediate language called 

Java bytecodes - the platform-independent codes that are then interpreted by the interpreter on 

the Java platform.  

 

Java bytecodes can be seen as the machine code instructions for the Java Virtual Machine 

(Java VM), which parses and runs each Java bytecode instruction on the computer. After 

compiling a program into bytecodes with a Java compiler, the bytecodes can then be run on 

any platform that has a Java VM, no matter if it is a Windows 2000 or Solaris workstation, or 

an iMac (Figure 2.21). 
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Java program 
class HelloWorldApp {

public static void main(String[] args) {
System.out.println("Hello World!"); //Display the string.

}
}

Hello.java

Compiler   

Hello.class  

Interpreter 

 

 
 

Windows 2000 

Hello.class  

Interpreter 

 

 

 

Solaris 

Hello.class 

Interpreter 
 

 
MacOS 

 

Figure 2.21: The compiler builds one class file (bytecode) that can be interpreted by the VM 

of all platforms [71]. 

 

The Java Platform 

The Java platform is a software-only platform that runs on top of other hardware-based 

platforms like Windows 2000, Linux, Solaris, Irix and MacOS. 

 

The Java platform has two components:  

 

� The Java Virtual Machine (Java VM)  

� The Java Application Programming Interface (Java API) 

 

The Java API is a large collection of ready-made software components that provide many 

useful capabilities, such as graphical user interface (GUI) widgets. The Java API is grouped 

into libraries of related classes and interfaces; these libraries are known as packages. 
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Figure 2.22: JavaTM 2 Runtime Environment, Standard Edition Version 1.3: The Java API 

and the virtual machine build the Java Runtime Environment (JRE) that insulates the 

program from the hardware. 

 

Native code is code that after it is compiled, runs directly on a specific hardware platform. As 

a platform-independent environment, the Java platform can be a bit slower than native code. 

However, smart compilers, well-tuned interpreters, and just-in-time bytecode compilers can 

bring performance close to that of native code without threatening portability. 

 

The Solaris, Linux and Microsoft Windows versions of the Java 2 Platform, Standard Edition 

version 1.3 contain the Java HotSpot Client VM, including a specially tuned client compiler. 

This configuration delivers:  

 

� Better performance than any previous Java platform. 

� Faster start-up.  

� Smaller memory footprint.  

� Faster interactive performance.  

� Virtually pause-less garbage collection. 

 

Since clustering of gene expression data is extremely computational intensive Java 1.3 was 

used because of the speed gain in comparison to Java 1.2. Java 1.3 has proven to be factor 4 to 

5 faster than the previous release, enabling Java applications to be almost as fast as native 

codes form c and c++ compilations. 
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Results 

In this chapter we survey results, which are obtained by analyzing gene expression data with 

the software presented in this paper. For demonstration purposes we use published and 

publicly available data and compare the results with the published analysis gained from that 

dataset. 

 

3.1 Sources of Experimental Data 
The Gene expression of primary human fibroblasts stimulated with serum following serum 

starvation was studied by Iyer et al. using a microarray with 9,800 cDNAs (Figure 3.1) [73].  
 

 

Figure 3.1: Expression image showing 517 genes in 12

different time points of serum stimulation of primary

human fibroblasts. Foreskin fibroblasts were grown in

culture and were deprived of serum for 48 hr. Serum was

added back and samples taken at time 0, 15 min, 30 min,

1 hr, 2 hr, 3 hr, 4 hr, 8 hr, 12 hr, 16 hr, 20 hr, 24 hr. The

final data point was from a separate unsynchronized

sample. Data were measured by using a cDNA micro-

array with elements representing 8613 distinct human

genes. All measurements are relative to time 0. Genes

were selected for this analysis if either (1) their

expression level deviated from that in quiescent

Fibroblasts by at least a factor of 2.20 in at least two

samples from serum-stimulated cells or (2) the standard

deviation for the set of 13 values of log2 (expression

ratio) measured for the gene in this time course exceeded

0.7. In addition, observations in which the pixel-by-pixel

correlation coefficients for the Cy3 and Cy5 fluorescence

signals measured in a given array element were less than

0.6 were excluded. The color scale ranges from saturated

green for log ratios -3.0 and below to saturated red for log

ratios 3.0 and above. Each gene is represented by a single

row of colored boxes; each column represents a single

time point [73]. 
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DNA microarray hybridization was used to measure the temporal changes in mRNA levels of 

8613 human genes at 12 time points, ranging from 15 min to 24 hours after serum stimulation. 

From this 8613 a subset of 517 genes whose expression changed substantially in response to 

serum is chosen for a cluster analysis using (1) Hierarchical Clustering, (2) k-means, (3) Self 

Organizing Maps, and (4) Principal Component Analysis. The entire detailed data set is 

available as a tab-delimited table at the Stanford Web site (genome-

www.stanford.edu/serum). 

 

Since this is a time series and precalculated dataset, no data adjustments are used. For the 

distance measurement the program default parameter (see Appendix A) is used, so that for 

each clustering procedure the usually best distance measurement is chosen automatically.   

 

3.2 Hierarchical Clustering 
Average Linkage, Complete Linkage and Single Linkage Clustering have been implemented. 

The clustering can be processed on genes and/or experiments. The algorithm has been tuned 

for optimal performance: whole yeast genome (6116 genes) in 66 seconds (PIII 750, 

Windows NT, Java 1.3), which is about 40 to 50 times faster than the straightforward 

implementation without reference tables to prevent unnecessary searches in the matrix. 

 

 
Figure 3.2: Hierarchical Clustering Dialog. 

 

After the calculation is finished, the tree result is shown and clusters can be interactively 

specified.  For our sample data Average Linkage Clustering with Euclidian Distance was 

used, since Average Linkage usually gives the best results for gene expression data. The tree 

is well distributed and clusters are easily visible by inspecting the ordered expression image. 

For the fibroblast dataset we can distinguish 10 different clusters, marked A to J in Figure 3.3. 
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Cluster A 

Cluster B 

Cluster C 

Cluster D 

Cluster E 

Cluster F 

Figure 3.3: Hierarchical clustering result using Average Linkage Clustering and Euclidian 

Distance. (l) Tree and cluster image (r) Expression plots of all genes and median of a cluster. 
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Cluster G 

 

Cluster H 

 

Cluster I 

 

Cluster J 

 

Figure 3.4: Expression plots of all genes and the median of a cluster. 

 

Every pattern can easily be distinguished from others. Some are completely different (E and 

F); some are just different in magnitude compared to other clusters (B and C). The clusters 

have been interactively specified by looking on the patterns in the expression image and then 

selecting the corresponding sub tree on the left side. Each cluster can be assigned with a color 

and a text. The clustering result can be saved as an image or data. It is also possible to change 

the appearance of the tree in various ways. 

 

3.3 k-means Clustering 
As described in chapter 2.7, the number of clusters has to be predetermined. Additionally, the 

maximum number of iteration cycles has to be specified. Usually the algorithm converges (no 

more reallocations between the clusters) before 50 cycles, but it can occur that the 

convergence criterion is not reached in a specific time. Therefore, to prevent infinite 

calculation, the maximum number of cycles has to be declared. 

 

   
Figure 3.5: (left) k-means clustering initialization dialog. (right) k-means convergence plot. 

 

For this analysis, k=10 was used for the number of clusters, since 10 basic patterns have been 

found by hierarchical clustering. As it is demonstrated here, hierarchical clustering can be 

used to predetermine the number of clusters for a specific dataset. 
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 3 
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   7 
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Cluster 1 

 

Cluster 2 

 

Cluster 3 

 

Cluster 4 

 

Cluster 5 

 

Cluster 6 

Cluster 7 

Cluster 8 

Cluster 9 

Cluster 10 

Figure 3.6: k-means clustering result using Euclidian Distance and 10 clusters. (l) Expression 

images of the clusters. (r) Expression plots of all genes and the median of a cluster. 
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As we can easily see, the clusters are very similar to the clusters found with hierarchical 

clustering. Cluster sizes and gene distribution are of course different, but both algorithms have 

found the same basic patterns. 

 

3.4 SOM Clustering 
SOM needs much more information from the user than the previously discussed algorithms. 

Figure 3.7 shows all the parameters that can be specified. All fields have default values, but it 

is recommended to vary the parameters to achieve the best clustering, since changing 

parameter yields different results. In general, the resulting patterns do not change very much 

by changing the learning and initialization parameters; what usually changes is the assignment 

of a gene to the one or other cluster. Most important are the dimensions of the SOM network 

and the number of iterations. The net dimensions specify the number of clusters by 

n=dimx*dimy, the iterations field how many steps are calculated until the algorithm stops. The 

calculation time therefore depends primarily on the number of clusters and the number of 

iterations, not on the number of genes in the dataset! Here 517,000 iterations are chosen to hit 

each gene vector 1000 times on average, since there are 517 genes in the dataset. A 5x2 

network is chosen to get an n=10 like in the previous clustering calculations. All the other 

parameters are let on their default value as shown in Figure 3.7.  

 

 
Figure 3.7:  SOM clustering initialization dialog.  

 

Since the initialization is random, different calculations lead to different results. SOM and k-

means have the disadvantage that they can find local instead of global minimums. Therefore 

several SOMs (and also k-mean clusters) have been calculated and compared to get the best 

possible result. The basic patterns have been found here too, however, cluster integrity, size, 

and gene distribution differ slightly (Figure 3.8). 
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Figure 3.8: SOM clustering result using Euclidian Distance. (l) Expression images of the 

clusters. (r) Expression plots of all genes, the SOM vector(blue), and the  median of a cluster. 
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Figure 3.9: Kraaijveld representation of the 5x2 SOM. The maximum distance between a unit 

and its cluster members is coded in gray-levels. The greatest cluster size is represented by 

black, the smallest by light gray fields. Cluster 1 to 5 in first row, 6 to 10 in second row. 

 
Figure 3.9 nicely demonstrates the variance of the genes in a specific cluster. We can 

immediately see that Cluster 4 has the least variance, and cluster 1 has the greatest. The 

expression plots in Figure 3.8 support this conclusion. 

 

3.5 Comparison 
For a better visibility of the similarity of clusters from different algorithms, two sets of 

clusters are chosen for a comparison. As it can easily be seen cluster size and gene 

distribution vary, but the means of the clusters are very similar to each other! 

 

  

 

Cluster B 

 
(a) 

Cluster 2 

 
(b) 

Cluster 5 

 
(c) 

Figure 3.10: Comparison of clusters with under expressed genes. (a) Cluster B from 

Hierarchical Clustering (b) Cluster 2 from k-means and (c) Cluster 4 from SOM clustering. 
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Cluster F 

 

(a) 

Cluster 1 

 
 (b) 

Cluster 3 

 
(c) 

Figure 3.11: Comparison of clusters with over expressed genes. (a) Cluster F from 

Hierarchical Clustering (b) Cluster 1 from k-means and (c) Cluster 3 from SOM clustering. 

 

 

3.6 PCA Genes 
No parameters are necessary for calculating a Principal Component Analysis (PCA). PCA is a 

very efficient method and it takes just about one second to calculate the result for this dataset. 

Figure 3.12 shows a plot of the Eigenvalues and the first 3, most significant patterns in the 

dataset. Pattern 1 is even with just looking onto the expression image visible (see tree clusters 

B and C for instance). It contains about two third of the information in the dataset. Principal 

components 2 and 3 have oscillating patterns around the x-axis. The first 3 PCs combine more 

than 90% of the variance, so that the components 4 to 13 have all together less than 10% of 

the information. Their patterns mainly describe the noise component in the dataset; PC13 has 

less than 5 ppm of the information! 

 
 

  
(a) (b) (c) (d) 

Figure 3.12: PCA results. (a) Eigenvalue plot (b) plot of Principal Component 1 (c) plot of 

Principal Component 2 (d) plot of Principal Component 3 
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(a)   (b) 

 
(c)   (d) 

Figure 3.13: PCA from Genes. The x-axis represents PC1, y-axis PC2 and z-axis PC3. (a) 

plain result (b) HCA clusters colored in the PC space (c) SOM clusters (d) k-means clusters. 
 

 Eigenvalue Percentage of variance 

  Principal Component 1 07.725 66.199 % 

  Principal Component 2 01.989 17.048 % 

  Principal Component 3 00.807 06.919 % 

  Principal Component 4 00.303 02.600 % 

  Principal Component 5 00.236 02.026 % 

  Principal Component 6 00.198 01.695 % 

  Principal Component 7 00.116 00.994 % 

  Principal Component 8 00.088 00.754 % 

  Principal Component 9 00.074 00.637 % 

  Principal Component 10 00.065 00.555 % 

  Principal Component 11 00.039 00.334 % 

  Principal Component 12 00.028 00.238 % 

  Principal Component 13 00.000 00.000 % 

Table 3.1: Eigenvalues and Eigenvalue distribution  
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Figure 3.13 shows the 3-dimensional view of the data in Eigenvector-space. Clusters from 

different clustering calculations can be visualized using colored points in the 3D-view. In 

general it can be determined that some clusters generate a compact data cloud in space. 

Therefore, PCA can be used to determine how compact and self-contained a cluster of genes 

is. 

 

3.7 PCA Experiments 
This is a very good example how PCA can be used to investigate relations between different 

experiments. If we look on the 3D-view (Figure 3.14), we can see that the experiments 

“move” through the Eigenvector space along a specific path. Time point 0 is in the center of 

the coordinate system. In the first 2 hours the cell moves in direction of positive x and 

negative z, than back until time point 12h and finally ends in a stage represented by the 

experiments at 14, 20, 24 hours and the unsynchronized sample. This analysis can also be 

used to determine the most distant or most related experiments in a study. For instance in 

cancer research it is important to find the most distant experiments, since they represent the 

difference between a cancer cell and a normal cell best.  

 

 
Figure 3.14: PCA result of experiment comparison. 
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3.8 Support Vector Machines 
To demonstrate SVM gene classification, 6 expression vectors from 4 genes involved in the 

Cholesterol biosynthesis [73] are used for the SVM training with only these 6 vectors 

classified positive and all others remaining negative (Figure 3.16 top). Although Cytochrome 

P450, 51 (lanosterol 14-alpha-demethylase) (CYP51) is involved in Cholesterol biosynthesis, 

it has not been used as a positive example to have a control for the validity of the 

classification. After training, the dataset has been classified using the trained SVM. Since the 

dot-product distance measuring method hasn’t given good results, the Covariance distance 

measurement has been used in combination with a Radial Kernel with 1.135 as width factor 

(Figure 3.15). The radial kernel width factor has been determined by increasing it, until 

CYP51 has been classified correctly. 

 

       
Figure 3.15: (left) SVM training initialization dialog. (right) SMV training convergence plot. 

 

All initial positivly classified genes (including CYP51) have been classified correctly and 46 

additional gene vectors have been classified to be potential genes involved in Cholesterol 

biosynthesis (Figure 3.16). In total, five gene expression vectors representing members of the 

Cytochrome family have been found. 

 

Similar to the expression profile of the five genes of the Cholesterol biosynthesis pathway, 

almost all positive classified genes show a sharply diminished expression beginning 4 to 6 

hours after serum stimulation of fibroblasts. This suggests that they are either also part of the 

investigated pathway or part of an other pathway that is active in a similar fashion.  

 

24 of the 46 genes are annotated genes, the remaining 22 genes can now be further 

investigated to support or reject the hypothesis of their possible role in the Cholesterol 

biosynthesis pathway. 
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Figure 3.16: SVM classification (top) The six training genes known to be part of Cholesterol 

biosynthesis. (bottom) 47 genes (including CYP51) positive classified by the SMV as potential 

genes involved in Cholesterol biosynthesis. 

 

 

3.9 Chromosomal Mapping 
It is also possible to import GenBank flat files into the program by just adding another line to 

the XML-file that represents the program tree on the left part of the program window. The 

sequence and annotation information contained in these files can then be used for further 

analysis. One example is the mapping of gene expression studies onto a chromosome of the 

studied organism. Consecutive genes are often similarly expressed and can be easily identified 

by this method (Figure 3.17). This can have various reasons. One is that the genes are so 

similar that cross-hybridization effects occur, a second could be that the consecutive genes are 

regulated by the same regulatory network. The latter information can be used for further 

analysis of the transcriptional program of these genes. 
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Unfortunately the annotation of the human chromosomes is not finished yet and therefore not 

available in the Genbank flatfiles. To demonstrate this program feature chromosome III of the 

model organism saccaromyces cerevisieae (yeast) is used, since its sequence is fully 

annotated. As microarray experiment a sporulation dataset form Stanford University (genome-

www.stanford.edu) [74] is chosen, because it contains almost all genes of the genome. 

Unfortunately the annotation is not very consistent, therefore not all genes from the 

experiment can be mapped. For that reason it is important that the official gene names from 

Genbank are used in the microarray data files! 

 

 
Figure 3.17: Program window showing the chromosomal mapping of a yeast sporulation 

gene expression study onto chromosome III of saccharomyces cerevisiae. First 3 genes are 

consecutive and similarly expressed. 
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Discussion 

 

In this work a versatile and transparent software suite for large-scale gene expression cluster 

analysis has been developed. The developed software enables data import and visualization, 

data normalization, and clustering using: (1) Hierarchical Clustering, (2) k-means, (3) Self 

Organizing Maps, (4) Principal Component Analysis and (5) Support Vector Machines. 

Additionally, motif finding and visualization tools have been implemented, including a basic 

Gibbs sampler, the drawing of sequence logos and motif diagrams as well as the possibility to 

search motifs in GenBank and FastA files with either a consensus sequence or a position 

weight matrix (PWM). Finally, mapping of gene expression data onto chromosomal 

sequences was included to enhance the investigation of regulatory mechanisms. 

 

An important and valuable feature of this software is to calculate and compare clustering 

results from different algorithmic approaches. One of the challenges in analyzing microarray 

data is the fact that there is no biological definition of a gene cluster. Moreover, due to the 

different underlying assumptions for the clustering techniques and the necessity to adjust 

various parameters, the clustering results can differ substantially. Thus, it is an imperative to 

apply several clustering techniques on the same data set and to compare the results. The 

comparison of clusters obtained using several clustering techniques enables the biologists to 

identify genes and/or experiments that have been rated similar in all clustering results. For 

example, one can begin with Hierarchical Clustering to get a first impression on the number 

of patterns hidden in the dataset and then use this information to adjust the parameters for k-

means and SOM clustering. PCA can be used to visualize these clusters in 3D space and get 

an impression on cluster size, integrity, and distribution, and to retrieve the most significant 

patterns in a study. It can also reveal some information about the number of clusters in the 

dataset, provided that data clouds of genes in the principal component space representing a 

cluster can be distinguished. All these clustering and classification procedures enable us to get 

an impression of what subset of genes or experiments represents the most significant 

information for a given investigated condition and therefore provides the opportunity for 

researchers to concentrate on particular target genes or experiments.  
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The selection of the right similarity distance measurement is very important and difficult task. 

Researchers have to answer the questions which of their investigated genes or experiments 

should be considered similar. Are two genes that are similar in shape but different in 

magnitude similar or not? Is a gene that is overexpressed similar to an underexpressed gene 

with the same time-course? By answering this questions and knowing the properties of the 

different procedures the best fitting distance measurement can be found. However, sometimes 

it is necessary to use several methods and choose one on the basis of the results gained with 

this function. In general it is useful to start with less complex distance functions and move to 

more sophisticated procedures if no satisfying results can be achieved. 

 

Since clustering is a statistical approach of getting information out of complex data, the 

results are often not easy to interpret. Therefore extensive work has been done to visualize the 

results as intuitive and informative as possible, not only for computer scientists and 

mathematicians, but also and most important for biologists. The user input in all this 

mathematical approaches is very important, since different parameters can lead to different 

results and normalization can change the data in an unintentional way. For that reason the 

investigating researcher should be familiar with the mathematical procedures and the effects 

they can have to the biological information gained from such analysis methods. Improper 

analysis can and will yield to false results and wrong conclusions. It is also essential that 

results received from clustering analysis can only be seen as an indication of possible 

relationships. Verifying these presumptions in biological experiments is indispensable!  

 

The techniques introduced in this paper have proven to be useful to unveil meaningful 

biological information but they can be just the starting point in the analysis of gene expression 

data. Many problems are at the moment not fully addressed and need to be further 

investigated. Substantial investment and effort will be necessary to develop new analytic 

methods that elucidate more complex correlations like non-linear or multi-input relationships. 

The algorithms presented here can only be seen as first steps towards a more extensive and 

proper analysis system of the complex processes of gene expression and regulation in living 

cells.  

 

The field of microarray technology and genomic research in general is developing at an 

astonishing rate. It will be necessary to continuously improve and adapt the developed 

software to the newly gained knowledge and standards to maintain the status of a valuable and 

flexible software package in functional genomics. Some possible improvements for the near 

future include: 
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General program features 

� Import/Export of complete results for later editing 
� Input from XML and database resources 
� Implementation of filter and significance tests 
� Automatic coloring of clusters for cross-cluster analysis 
� Import of saved clusters for cluster comparison 
� Thumbnail window for better navigation 
� User preference files and user accounts 
� Import of user defined queries for each gene, links to GenBank, etc. 
� Tracking of the command history and establishing “analysis procedures” 
� Additional graphical displays [75] 
� Histogram drawing 
� License manager 
 

Data adjustment and similarity distance 

� Jackknife method [26] 
� Linear regression, total ratio and ratio statistics normalization for experiments 
� Visualization of similarity distance matrices 
 

k-means and SOM 

� K-means and SOM also for experiments 
� Fuzzy clustering (one gene can belong to more than one cluster or no one) 
 

Hierarchical Clustering 

� Implementation of Ward’s method and weighted average linkage clustering 
� Implementation of Neighborhood Joining algorithm 
� Implementation of Bootstrap algorithms for tree analysis 
� Automatic scaling of the tree 
� Expression and centroid plots of tree clusters 
 

Principal Component Analysis 

� Import/Export of complete results for better editing. 
� Gene shaving algorithms [75]. 
� Better navigation in 3D-result window. 
� Automatic search of genes similar to specific patterns (PCs) 
� Eigengene and Eigenexperiment Analysis [Alter] 
 

Support vector machines 

� Expression image generation of positive classified genes (expression and centroid plots) 
� Automatic iterative best parameter search for best classifications 
� Additional kernel functions 
 

GenBank module 

� Wizards for easy adding, managing and removing of GenBank entities. 
� Automatic update of GenBank flat files from the NCBI. 
� Calculation and display of Chromosome correlation maps [77] 
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One very important feature in the near future will be the ability to import data in the currently 

developing standard format for microarray data. The Microarray Gene Expression Database 

group (MGED, www.mged.org) consisting of the most influential institutes in microarray 

research and database management have developed two standards, called MIAME (Minimum 

Information About a Microarray Experiment) and MAML (MicroArray Markup Language) 

which will allow the exchange of datasets in a well defined format between research facilities 

and databases all over the word. It will become very important and helpful for data exchange.  

 

The program has been developed in Java because of the platform independency, which is very 

important in this field, since biologists often use different platforms like Windows NT and 

MacOS and it enables the use of very advanced computer hardware like multiprocessor 

servers and high performance workstations with large memory resources, which are necessary 

for the clustering of large datasets. The software has been tested on PCs under Windows NT 

and Linux as well as on a multiprocessor Sun server under Solaris without any adaptation of 

the code. Although Java is not as fast as native code, the time consumed for calculating a 

result is little on state of the art computers. Additionally, smart compilers, well-tuned 

interpreters, and just-in-time byte-code compilers can bring performance close to that of 

native code without loosing the advantage of portability. 

 

In summary, the flexibility, the variety of analysis tools and data visualizations, as well as the 

transparency and portability makes this software suite a valuable tool in future functional 

genomic studies. 
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AAppppeennddiixx  AA  
Default Distance Functions 

For each clustering algorithm a default distance function has been specified for an easier 

program operation. The default similarity measurement is the measurement that gives usually 

the best results for a given clustering algorithm and/or is used in the papers. In almost all 

clustering algorithms Euclidian Distance is used, since it uses no normalization on the vectors 

and therefore does not manipulate the original data. 

 

  Clustering algorithm Default similarity distance measurement 

  Hierarchical Clustering Genes Euclidian Distance 

  Hierarchical Clustering Experiments Same distance as used for genes 

  k-means Clustering Euclidian Distance 

  Self Organizing Maps (SOM) Euclidian Distance 

  PCA Genes Covariance 

  PCA Experiments Covariance 

  Support Vector Machines training Average dot product 

  Support Vector Machines classification Same distance as used for training 
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