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Abstract

Abstract

Microarray technology has become an essential tool in functional genomics. However, there are

many sources of variation which affect the measured gene expression levels. Normalization refers to

the process of removing systematic variation. For this purpose, a platform independent Java applica-

tion for normalization and analysis of microarray experiments has been developed. The experiment data

are graphically organized according to the design, scatterplots, histograms and boxplots allow the vi-

sualization of the data. Several normalization methods have been implemented: 1) global method, 2)

LOWESS-regression, 3) self-normalization for dyeswapped slides and 4) normalization with controls.

After normalization, replicated measurements can be combined and averaged to enable statistical analy-

sis. For the detection of genes with significant changes in expression, a module is provided including: 1)

fold-change detection and 2) t-test with adjusted p-values. The selected genes can be saved to a text file,

readable by other microarray-analysis software. The variety of normalization methods and the ability of

dealing with a wide range of experimental designs makes this software a useful and freely available tool

to normalize microarray experiments.

Keywords: microarray, normalization, experimental design, statistical analysis, Java
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Abstract

Kurzfassung

Die Microarray Technologie ist ein vielversprechendes Verfahren in der Genomforschung. Die

gemessenen Genexpressionswerte werden jedoch durch verschiedenste Fehlerquellen verfälscht. Nor-

malisieren bedeutet Erkennen und Korrigieren von systematischen Fehlern. Für diesen Zweck wurde

eine betriebssystemunabhängige Java-Anwendung entwickelt. Abhängig vom Design des Experimentes

werden die Daten grafisch organisiert und können mit einer Reihe von Visualisierungsmethoden wie

Scatterplots, Histogramme oder Boxplots angezeigt werden. Eine Reihe von Normalisierungsmethoden

wie 1) globale Methoden, 2) lineare Regressionsmethode, 3) Selbst-Normalisierung für Dyeswap-Paare

und 4) Normalisieren mittels Kontrolspots wurden implementiert. Nach dem Normalisieren können

replizierte Messwerte kombiniert und gemittelt werden, um eine statistische Auswertung zu ermöglichen.

Gene mit signifikanten Expressionswerten können mittels 1) Foldchange-Detektion oder 2) T-Test mit

korrigierten p-Werten identifiziert werden. Diese Gene können in ein Textfile, welches mit weiterführen-

der Analysesoftware kompatibel ist, exportiert werden. Durch die Auswahl verschiedener Normal-

isierungsmethoden und die Fähigkeit, unterschiedliche Experiment-Designs zu berücksichtigen, wird

ein frei verf̈ugbares und benutzerfreundliches Programm für das Normalisieren und Auswerten von

Microarray-Experimenten angeboten.

Schlüsselẅorter: Mikroarray, Normalisieren, experimentelles Design, statistische Analyse, Java
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Glossary

Bias The word bias refers to all sources of systematic variations: bugs in software, miscali-

brated measurements, etc. Biased measurements are systematically wrong.

Biological replicates biological samples from independent sources, representing the same

condition, e.g. liver tissue from individual mice of the same sex and strain.

Bonferroni correction Multiple-testing adjustment in which the significance-level is divided

by the total number of tests.

cDNA (complementary DNA) DNA synthesized from mRNA or DNA by reverse transcrip-

tase often synthesized from a cellular extract.

Channel A channel is an intensity-based portion of an expression dataset. In some cases, such

as Cy3/Cy5 array hybridizations, multiple channels (one for each label used) may be combined

to create ratios.

Chromosomes Part of a cell that contains genetic information. A chromosome is a grouping

of coiled strands of DNA, containing many genes. Most multicellular organisms have several

chromosomes, which together comprise the genome. Sexually reproducing organisms have two

copies of each chromosome, one from the each parent.

Class In experimental design, aclassdenotes a subset of the whole experiment. For exam-

ple one single time-point out of a time-course experiment represents one class, containing all

x
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microarrays belonging to this time-point. An experiment can consist of any number of classes.

Control The reference for comparison when determining the effect of some procedure or

treatment.

Cy3, Cy5 Cyanine fluorescent dyes used in microarray experiments for labelling different

samples of DNA. Cy3 can be visualized as green, Cy5 as red.

DE Short form fordifferentially expressed.

Distribution A distribution is a graphic representation of the values of a variable. The line

formed by connecting data points is called a frequency distribution. An important aspect of the

”description” of a variable is the shape of its distribution. Typically, one is interested in how

well the distribution can be approximated by the normal distribution.

DNA (DeoxyriboNucleic Acid) The molecule that encodes genetic information. DNA is a

double-stranded polymer of nucleotides. The two strands are held together by hydrogen bonds

between base pairs of nucleotides. The four nucleotides in DNA contain the bases: adenine (A),

guanine (G), cytosine (C), and thymine (T).

Dye-swap pair Two slides comparing the same samples of RNA, one with normal and one

with reversed dye-assignment.

Error In statistics,error refers to all kinds of unspecific variability (variability introduced in

the measurement). That is different from the everyday-use to meanmistake.

Estimation The process of using sample statistics to estimate population parameters.

Expression The conversion of the genetic instructions present in a DNA sequence into a unit

of biological function in a living cell. Typically involves the process of transcription of a DNA

sequence into an RNA sequence.
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Fold change The ratio of RNA quanitites between two samples in a microarray experiment.

Gene DNA which codes for a particular protein or a functional or structural RNA molecule.

Genesis Cluster analysis software for large scale gene expression studies. Developed by

Alexander Sturn,TU-Graz Bioinformatics Group.

GUI Graphical User Interface

Hybridization A hybridization is the act of treating a microarray with one or more labeled

preparations from a specified set of conditions.

MARS Microarray Analysing and retrieval system. A J2EE application for persisting and

organizing microarray data, based on Enterprise Java Beans (EJB) and Struts framework. De-

veloped by theTU-Graz Bioinformatics Group.

Microarray A microarray (or slide) refers to the physical substrate to which biosequence

reporters (cDNA or oligos) are attachted. Microarrays are hybridized with labeled samples and

then scanned and analyzed to generate data.

Microarray experiment An experiment studies a system under controlled conditions while

some conditions are changed. In gene expression, one varies some parameter such as time,

drug, developmental stage, or dosage on a sample. The sample is processed and labeled with a

detectable tag (Cy3, Cy5) so that it can be used in hybridization with microarrays.

mRNA (messenger RNA) A specialized form of RNA that serves as a template to direct pro-

tein biosynthesis. The amount of any particular type of mRNA in a cell reflects the extent to

which a gene has been ”expressed”.
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Normal distribution Also called Gaussian distribution, this is one of the most important

statistical distributions, since experimental errors are often normally distributed. Further, the

normal assumption simplifies many methods of data analysis.

Normalization The process of removing the effect of all sources of non-biological variation

from microarray data, making them comparable.

Null hypothesis A hypothesis for which the effects of interest are assumed to be absent.

Commonly used as basis for setting up statistical tests.

Oligo (Oligonucleotide) Short sequence of nucleotides (< 80 bp) always single stranded to

be used as probes or spots. Oligos are often chemically synthesized.

PCR (Polymerase Chain Reaction) Allows the exponential copying of part of a DNA molecule

using a DNA polymerase enzyme.

PMT (Photomultiplier tube) Part of optical scanner for microarrays, which detects photons

emitted by fluorescent dyes.

Protein A biological molecule which consists of many amino acids chained together by pep-

tide bonds. Proteins perform most of the enzymatic and structural roles within living cells.

p-Value A measure of evidence against the null hypothesis in a statistical test.

Ratio Also referred to as ”fold change”. A ratio refers to a normalized signal intensity gener-

ated from one feature in a given channel divided by a normalized signal intensity generated by

the same feature in another channel.

Replication A replicate set refers to repeated experiments where the same type of array is

used, and the same probe isolation method is used to get more statistically meaningful interpre-

tation of results. Reproducing an experiment helps to verify its results.
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RNA (ribonucleic acid) A class of nucleic acids that consist of nucleotides containing the

bases: adenine (A), guanine (G), cytosine (C), and uracil (U). An RNA molecule is typically

single-stranded and can pair with DNA or with another RNA molecule.

RT-PCR (Reverse Transcription Polymerase Chain Reaction) The most sensitive technique

for mRNA detection and quantitation currently available. It is sensitive enough to enable quan-

titation of RNA from a single cell.

Sample A subset of a population. Usually, the size of the sample is much less than the size of

the population. The primary goal of statistics is to use information collected from a sample to

try to characterize a certain population.

Significance level The p-value that is regarded as providing sufficient evidence against a null

hypothesis. If the p-value falls below the significance-level, the null hypothesis is rejected.

Statistics A statistic is a number computed from a sample.

Statistical significance A result is statistically significant when it doesn’t happen by chance.

Subgrid A subarea of a single microarray. Within one subgrid all spots are printed by the

same print-tip.

Technical replicates Multiple hybridisations with RNA samples obtained from the same bi-

ological source.

TIFF (Tagged Image File Format) One of the most popular and flexible public domain raster

file formats. It’s main strengths are a highly flexible and platform-independent format which is

supported by numerous image processing applications.
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Variable Numerical data are observations which are recorded in the form of numbers. Num-

bers are variable in nature. E.g, when measuring gene expression levels, the score will vary for

reasons such as temperature, cell activity etc. For this reason, the gene expression level is called

variable.

z-score A statistical measure that quantifies the distance (measured in standard deviations) a

data point is from the mean of a data set. The z-score associated with the ith observation of a

random variablex is given by

zi =
xi − µ

σ
(1)

whereµ is the mean andσ is the standard deviation of all observationsx1, ..., xn.

xv



Chapter 1

Introduction

With only a few exceptions, every cell on organism contains a full set of chromosomes and iden-

tical genes. Only a subset of these genes is active at a given time; these gene define the unique

properties of a cell type.Gene expressiondescribes the transcription of information contained

within the DNA into messenger RNA (mRNA) molecules that are then translated into proteins,

performing most of the critical functions of cells. Biologists study the kinds and amounts of

mRNA produced by a cell to learn which genes are expressed. Gene expression is a complex

regulated process that allows a cell to respond dynamically to environmental stimuli and to its

own changing needs. It controls which genes are expressed in a cell and increases or decreases

the level of expression of particular genes as necessary. The study of gene expression helps to

understand fundamental aspects of growth and development and underlying genetic causes of

many human diseases (see [6]). Microarrays help to monitor the expression of many genes in

parallel. They consist of glass slides prepared by high density printing of complementary DNAs

(see [32]).

1.1 Microarrays

A microarray employs the ability of a given mRNA molecule to bind specifically to, or hy-

bridize to, the DNA template from which it is originated. It contains many DNA sequences,

and the expression levels of thousands of genes can be determined in a single experiment by
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Introduction 1.1 Microarrays

measuring the amount of mRNA bound to each site on the array (see [11]). Microarrays are

small glass slides or nylon membranes onto which the gene sequences are printed, spotted or

synthesized. The sequences can be DNA, cDNA or oligonucleotides. Arranged systematically,

the particular sequences can be identified by the location of the spots on the slide (see [36]).

Figure 1.1:DNA clones are mechanically printed to a glass slide. Then fluorescently labeled
cDNA probes are hybridized to the microarray. Afterwards the slide is scanned using two
different wavelenghts, resulting in two images including information about the fluorescence
intensities (see [5] and [2]).

The relative abundance of each of the gene-specific sequences in two RNA samples (test

and reference) may be estimated by fluorescently labelling thesamples, mixing them, andhy-

bridizing the mixture to the sequences on the glass slide. The two samples of mRNA from cells

(target) are reverse transcribed into cDNA, and labelled using two differentdyes(red Cy5 and

green Cy3 in general). Usually, the reference sample is labeled with Cy3 and the test sample

with Cy5. The mixture reacts with the spotted cDNA sequences (probes). This, called com-

petitive hybridization, results in cDNA sequences from the targets and the probes base-pairing

with one another. After this hybridization step is complete, the microarray is placed in a scan-

ner, consisting of lasers with different wavelengths, a microscope and a camera. The slide is

scanned twice, first using one color laser, and then the second. Laser light excites the fluores-

cent dyes (Cy3 is excited by green laser light such as 532nm, Cy5 is excited by red laser light at

2



Introduction 1.1 Microarrays

635nm). The dyes emit fluorescent radiation with characteristic spectra, which is measured by

the microscope and the camera to create monochrome digital images of the array, one for each

wavelength.

Figure 1.2:Green spots indicate that the test substance has lower activity than the reference
substance, red spots indicate that the test substance is more abundant than the reference sub-
stance, yellow spots mean that there is no change in the activity level between the two popu-
lations of test and reference substance. Black represents areas where neither test nor control
substance has bound to the target DNA (taken from [10]).

Usually, the raw wavelength images are collected at 16-bit resolution, giving fluorescence

intensity measurements for each sample for each spot. The channel intensities for any spot

should be proportional to the amount of mRNA from the corresponding gene in the respective

sample. In practice the absolute channel intensities are usually less reproducible, and for the

most part, theratios (Cy5 / Cy3) are used for further analysis. Thus, the spotted arrays provide

information only on the relative gene expression between specific cells or tissue samples only.

For display purposes only, the two images are pseudo-colored and merged, to create a ratio

image of the microarray.
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Introduction 1.2 Design of microarray experiments

Figure 1.3:The workflow of microarray experiments (taken from [4]).

1.2 Design of microarray experiments

Microarray experimentsare large-scale experiments and can be costly in terms of consumables

and time. Careful design is important if the results should be maximally informative, given the

effort and the resources. Which issues need to be adressed when planning, which features have

impact on the resulting measurements? This section gives a short overview about important

points for planning micro array experiments. (For further information see [48], [27], [33], [42],

[12].)

1.2.1 Main requirements

Before planning an experiment, following issues need to be considered:

• Aim of the experiment. What are the questions to be answered? (search fordifferentially

expressed(DE) genes,search for patterns between different samples, etc.)

• Types of mRNA samples. What mRNA will be used?

• The amount of available RNA extractable from the biological samples.
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• The number of slides available.

• Experimental process before hybridization (i.e. RNA isolation, labelling)

• Type of controls: positive, negative, etc.

• Verification method: northern/western blot, RT-PCR, knock-out studies etc.

An experiment should be planned to fulfil requests like:

• It should be simple in design and analysis.

• Proper statistical analysis should be possible.

• The experiment’s results should allow valid conclusions.

• Using as few experimental units as possible, random errors should be properly small.

• Different treatments of experimental units should not lead to systematical dependance.

1.3 Graphical design representation

In many papers graphical elements are used to illustrate microarray designs (see [48], [12],

[33]). One way is to use directed graphs, containingnodesandedges. The nodes correspond

to target mRNA samples, and the edges correspond to hybridizations between two samples. By

convention, the green-labelled sample is placed at the tail and the red-labelled sample at the

head of the arrow. The structure of the graph determines which samples can be compared (there

must be a path between the two samples) and the precision which can be achieved (the shorter

the path, the higher the precision will be). Some examples should show how microarray designs

can look like (see [48], [42]).
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Introduction 1.3 Graphical design representation

Figure 1.4:Graphical representation: a) shows replicate hybridisations. Each slide involves
sample A (labelled red) and sample B (labelled green). The number 5 indicates five replicated
hybridisations. b) describes the simplest loop design. Three samples - A,B,C - are hybridized
together in pairs, each sample labelled once in red and once in green (taken from [43]).

1.3.1 Basic example

1.3.2 Direct versus indirect comparisons

The first issue in design is to decide whether to usedirect or indirect comparisons: whether to

make the comparison within or between slides(see [43]).

1.3.2.1 Example with two hybridizations

Direct comparisonmeans that both samples of RNA, T and C, are hybridized together on both

slides: T-C.Indirect comparisonmakes use of a common reference R. Two hybridizations will

be needed, T-R and C-R. The key difference between direct and indirect design are the variances

of the log-ratios. Direct design provides less variance compared to indirect design, in this case.

Figure 1.5: Comparing samples T and C. a) describes direct comparison, the expression of
the genes is measured on the same slide. b) using indirect comparison, T and C are measured
separately on two slides. R is the reference sample (taken from [43]).

6
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1.3.3 Dye-swap experiments

Systematic bias1 can be reduced by doing each hybridization twice withreversed dye assign-

mentin the second hybridization. Microarray experiments show systematic differences (due to

dye-effects, see section 1.5.1 and 1.6)in the red and green intensities, which requirenormaliza-

tion. For this reason, dye-swap pairs are recommended wherever possible. Importantly, direct

comparisons of replicated slides with the same labelling should be avoided because unadjusted

color bias might accumulate.

Figure 1.6:Design choices: a) shows a loop design with each hybridisation done twice (indi-
cated by the number2). b) shows dye-swap replication, which involves two hybridisations for
two samples (indicated by antiparallel arrows). One arrow describes normal dye-assignment,
its reversed partner indicates reversed dye assignment (By convention, the green-labelled sam-
ple is placed at the tail, the red-labelled sample at the head of the arrow). Both experiments a)
and b) consist of 6 hybridisations (taken from [43]).

1.3.4 Time-course experiments

In time-course experiments, the design depends on the comparisons of interest. Additionally,

practical constraints (e.g. restricted number of hybridizations, number of time points) determine

the design choices. Some examples will illustrate the wide range of design possibilities (see

[43]).

The design A) in figure 1.7 uses T1 (timepoint 1) as common reference. When the main focus

of the experiment is on the relative changes between T2, T3, T4 and T1, this is the best choice.

Design B) has one extra hybridisations between T2 and T3. Design A) in figure 1.8 shows

direct hybridisations between neighboring time points. If variations frome one timepoint to

1see glossary
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Figure 1.7:Common reference: A) T1 is used as reference, B) has one extra hybridisation (see
[43]).

another are of greater interest, then this design is preferable. Design B) describes loop-design.

At present, reference designs are mostly used, giving the advantage of easy interpretation and

analysis.

Figure 1.8:A) Direct hybridisations and B) Loop design (see [43]).

1.4 Random Errors and Replication

Unreplicated microarray experiments seem to be still the most common although the do not

provide any statistical significance. One reason may be that researchers do not want to waste

hybridizations for replication, when they could do a different one.Replicatesreduce variability

in summary statistics. In addition, the data obtained from replicate slides can be analyzed using

statistical methods and tests. It is difficult to say how many replicates are essential (see [30],

[44]), however it is proposed that three replicates are sufficient. Replication allows averaging,

and averages are less variable than their component terms (see [23], [20]).

1.4.1 Replicated spots on one slide

This common form of replication is valuable for monitoring the overall slide quality. It is

advisable to have them well spaced and not sticked together, as this gives a better reflection of

the variability across the slide. But they should not be used as replicates in terms of statistical

analysis (e.g. t-tests). All processing steps of the slide (printing, hybridisation, scanning) will

8



Introduction 1.5 Sources of Variation in Microarray Experiments

be shared by spot replicates, therefore any systematic effects on the measurement will also be

shared.

1.4.2 Replicate slides

Assessing the significance of log-ratios using data from just one single slide fails to take into

account an important source of variation - between-slide variability. Replication is essential to

estimate the variance of intensity-values between slides and allows the application of statistical

methods (e.g. t-tests, nonparametric tests). There are two forms:Technicaland biological

replicates (see [48]).

• Technical replicatesTechnical slide replicates are multiple hybridizations with RNA

from the same pool (from the same extraction). These replicates generally involve a

smaller degree of variation in measurements than biological replicates. Therefore they do

not provide the independence of data, and shared systematic effects of the replicates will

remain after averaging.

• Biological replicatesThis term refers to hybridisations using RNA extracted from differ-

ent biological sources (mice, cell cultures, etc.). Carrying out sample labelling separately

for RNA from different extractions will lead to more independent experiment results. It

is recommended to use biological replicates.

The type of replication can affect the precision of the experimental results. Optimal result

will be achieved by using biological replicates to provide independency in data and technical

replicates to assist in reducing the variability.

1.5 Sources of Variation in Microarray Experiments

In order to accurately measure gene expression changes, it is important to take into account the

randomandsystematic variationsthat occur in every microarray experiment (see [20]).
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1.5.1 Systematic errors

From the sources of systematic variation the most importantbiasis associated with the different

fluorescent dyes. Even such biases may be small, they may be confounding when searching for

subtle biological differences. Dye biases can stem from a variety of factors, including physical

properties (heat, light sensitivity, half life), efficiency of dye incorporation, or scanner settings.

Other artifacts result from the robotic printing process, hybridization including nonuniform

background signal intensities and any other spatial effects that are introduced during the pro-

duction and use of the microarrays. All these factors make distinctions between differentially

and constantly expressed genes difficult. The purpose of normalization is to get rid of systematic

errors.

1.5.2 Random errors

Random errorsoccur when a sample of a variable population is taken, and by chance the sam-

ple does not perfectly represent the real population. This will always happen to some degree,

because populations are naturally variable. Random errors have larger effects, if the sample size

is small.Replicationplays an important role in dealing with random errors. Replication allows

averaging, which reduces variability.

1.6 Normalization

The goal of the normalization step is to identify and remove any systematic bias in the mea-

sured fluorescence intensities, arising from variation in the micro array process rather than from

biological differences between the RNA samples or the printed probes. This can be:

• different labelling efficiencies of the dyes

• different amounts of Cy3- and Cy5 labeled mRNA

• different scanning parameters

• spatial or plate effects, print tip effects, etc.
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Introduction 1.7 Analyzing experimental results

The need for normalization can be seen clearly inself-self experiments: Two identical mRNA

samples are labelled with different dyes and hybridized to the same slide. One would expect the

red and green intensities to be equal, but the green intensities often tend to be higher than the

red ones. In addition, this imbalance is not constant across the spots. It can vary according to

spot intensity, slide origin, location on the slide and other parameters (see [47]). Normalization

Figure 1.9:Imbalance of red and green intensities: The left figure shows a scatterplot before
(global) normalization. One dye tends to have higher overall intensities. Right figure: after
normalization the dye-imbalance is corrected.

is carried outwithin andbetweenarrays. To be able to compare across slides, ascalingbetween

arrays is applied. After normalization, the data for each gene are typically reported as anex-

pression ratioor as the logarithm of the expression ratio. Note that normalization cannot rescue

bad quality data in any steps before: For example, any missing values resulting from scanning

or hybridization steps are lost information, so the associated values cannot be reproduced (see

[26], [22]).

1.7 Analyzing experimental results

After carrying out experiments, it is time to answer the biological questions posed when design-

ing the experiment. In most cases, the core question is which genes are DE2 (differentially ex-

pressed) and therefore of interest for further studies or verification methods. The possibilities of

2see glossary
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Introduction 1.7 Analyzing experimental results

analyzing the results mainly depend on the experiment’s design. Since unreplicated microarray

experiments are still quite common, statistical methods are unapplicable for those experiments

and the conclusions made have no statistical validation. For microarray experiments using

replication, parametrical and non-parametrical tests as the t-test or the Mann-Whitney-test can

be applied (see [28], [25], [45]).

12



Chapter 2

Objectives

The aim of this thesis was to develop a freely available, platform independent application for

visualization, normalization and analysis of microarray experiments. It should provide a wide

range of possible experimental designs and normalization methods. Users should be guided

through the steps of normalization and data analysis.

2.1 Uploading Experiment Data

Since microarray experiments include multiple slides, the data should be treated according to the

experimental design. The user should be able to organize the uploaded slides into experiment

classes (biological conditions, i.e. different time-points) and to provide all the information

needed for normalization (e.g. reverse labelled slides, groups of dye-swap pairs,...).

2.2 Supported Image Analysis Software

Starting point of all normalization steps are result files from image analysis software, containing

all essential data. The program should get by without extra data (e.g. image files, GAL files).

Result files from different software vendors (e.g. GenePix, Agilent) should be supported, it

should be easy to add other result file formats.

13
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2.3 Normalization Methods

A wide choice of common normalization methods should be offered to the user to remove the

systematic errors within and between arrays (e.g. Lowess fit, using control spots, scaling and

averaging within and between slides). It should be possible to add newly developed algorithms

at a later stage. The normalization methods should be available as a library to be used in other

analysis tools.

2.4 Data Visualization

Because visualization of microarray data is the best help for choosing the way to normalize

experiments, common used plots (e.g. scatterplot, histogram, MA plot, boxplot) should be

implemented.

2.5 Identifying Genes of interest

One aim of microarray technology is the search for new target genes. A module should be

provided to detect DE genes with help of various methods (e.g. fold change detection, statistical

tests).

2.6 Export Files to other Software

As normalization is just a preprocessing step, the results should be easily exportable to other

analysis software (e.g. for clustering Genesis, see [13]). Output files should be printed, con-

taining normalized data and results of statistic tests (e.g. significance level), respectively.

2.7 Using JCCharts

All plots should use the Sitraka JCChart base components.
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2.8 Adding new normalization methods

It should be easy to add new developed normalization methods to the software. The available

algorithms should be defined by a XML configuration-file and be loaded at runtime.

2.9 Different source-file formats

Different source-file formats (e.g. GenePix, Agilent) and their file-loaders should also be de-

clared by a XML file and be loaded at runtime.
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Chapter 3

Methods

This chapter gives a survey of the programming tools and methods used for visualization, nor-

malization, analysis and organization of microarray data.

3.1 Image acquisition and analysis

The goal of image analysis is to provide foreground and background intensity values for the red

and green channels for each spot on a microarray (see [14]). Secondly, quality measures for

each spot are collected for marking weak or unreliable spots. Some issues of image acquisition

highly affect further analysis steps like normalization. These should be illustrated here (see

[29]).

3.1.1 Scanning and scanner settings

An optical scanner scans the array, recording the fluorescence emissions at each point on the

slide. One scan for each channel (Cy5 and Cy3) is performed and the data is stored into two 16-

bit TIFF (Tagged Image File Format) images. To avoidsaturated pixels(pixels emitting more

photons than the photomultiplier tube (PMT1) can process), the PMT-voltage can be adjusted so

that the brightest pixels are below the scanner saturation. However, PMT settings are sometimes

1see glossary
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a compromise between avoiding saturated pixels and getting weak sensitivity for less intense

pixels.

3.1.2 Varying PMT settings

In common, the Cy3-channel shows higher intensities. To balance this effect, the PMT voltage

for the Cy5-channel can be increased. The ideal scan is one in which the same amount of signal

is acquired in each channel, because most normalization methods assume that the majority of

spots on a slide show equal expression and therefore equal intensities in both channels. One

should keep in mind that varying PMT settings between the two channels has already a kind of

normalization effect, but it will have just little impact on thelog2-ratios, provided that an appro-

priate normalization method is applied. Especially intensity dependent methods (e.g. lowess)

mitigate such effects (see [24])

Figure 3.1:Editing ’flag features’ in GenePix Pro. The user can define quality criteria and link
them logically. Spots (features) which do not meet these criteria are marked as ’bad’ and can
be removed from normalization if required (see [24]).
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3.1.3 Marking spots, flagging

Certain spots should be ignored during later analysis because of defects on the slide, saturation,

small signal intensities etc. Most microarray acquistition programs have the ability toflagsuch

spots. For example, GenePix Pro lets the user define specialflagging criteriawhich can be

saved to be applied to every microarray. Boolean queries consisting of several conditions (e.g.

non-uniformity of spot, signal-intensity near background, etc.) joined by logical AND or OR

can be used for quality control. Spots not meeting the conditions would be marked asbadand

therefore excluded for later steps (see [24]).

3.2 Notation of microarray data

3.2.1 Intensities

With 2-color microarrays, the data acquisition process (scanning of the slide) provides at least

four parameters for each spot, the red and green foreground and background intensities. The

foreground red and green values are written asRf andGf , the background values areRb and

Gb. After background correction, the intensities are simplyR andG. Intensity values are the

origin for normalization techniques and data visualization.

3.2.2 Ratios

After normalization, the data for each gene is typically described as anexpression ratio. The

ratioX for theith gene is simply:

Xi =
Ri

Gi

where i = 1, ...Ngenes (3.1)

Ratios have the advantage of providing an intuitive measure of expression change, but they

remove information about the gene’s absolute expression level. And they treat up- and downreg-

ulated genes differently: Genes upregulated by a factor 2 have an expression ratio of 2, whereas

genes downregulated by factor 2 have an expression ratio of 0.5.
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3.2.3 Log Ratios

A logarithmic transformation produces a continuous spectrum of values and treats up- and

downregulated genes equal.

Xi = log2

Ri

Gi

where i = 1, ...Ngenes (3.2)

On thislog2-scale,X = 0 represents equal expression,X = 1 represents upregulation by

a factor 2,X = −1 downregulation by a factor 2,X = 2 upregulation by factor 4, and so on.

Additionally, calculatinglog2-values spreads the values more evenly across the intensity range

and provides better visualization of the data. And it tends to make the variability of data more

constant over the intensity range (see [46] for more information about data-transformations).

3.3 Graphical Representation of Microarray Data

Visualization can help to assess the success of the experiment and can guide the choice of

normalization method or analysis tool. Thus, it is useful to have a variety of graphical displays

for microarray data (see [37]).

3.3.1 Scatter Plot

Single slide expression data are typically displayed by plotting the log-intensity of the red dye

against the log-intensity of the green dye:log2R versuslog2G. Scatterplots may help to identify

relationships between the two dyes, Cy5 and Cy3. The high correlation between the channel

intensities always dominates the plot, so it may be difficult to discern the interesting features of

the plot.
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Figure 3.2:Scatterplot oflog2R vs.log2G. The line markslog2
R
G

= 1.

3.3.2 MA Plot

A MA-plot is a scatterplot with transformed axes. The X-axis conforms with the loged total

intensity value of the spot, the Y-axis shows exactly the log-ratio of the two dyes.

M = log2 R− log2 G and A =
1

2
(log2 R + log2 G) (3.3)

With it information about the intensity is introduced.

Figure 3.3:MA plot of the same data set.
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3.3.3 Box and Whiskers Plot

A boxplotroughly displays the central tendency and variability of a dataset. A box in the middle

encloses 50 percent of the data (Interquartile range IQR). The median is marked as a line in the

box. The whiskers present the data values’ total spread. In microarray experiments boxplots are

useful for comparing log-ratios between different subsets of the data. For example, comparing

multiple boxplots, where one single plot contains the log-ratios of one single subgrid.

Figure 3.4:Boxplot of slide with 48 subgrids, not normalized.

3.3.4 Histogram

A Histogramplots the distribution of values in one sample. It can be used to answer following

questions:

• How is the data distributed?

• How spread is the data?

• Are there outliers?
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Figure 3.5:Frequency histogram

A histogram showing the distribution of log-ratios for a single slide can give an overview

about how the data is distributed and therefore serves for deciding which normalization method

to use or which statistical analysis is appropriate.

3.4 Background Correction

Having information about background intensities, it is recommended to correct the foreground

intensities by subtracting the background,R = Rf −Rb andG = Gf −Gb. The disadvantage

of this subtraction is that negative values forR andG may be produced for some spots. Negative

values cannot belog-transformed, therefore these spots would show missing values and must

be excluded from analysis.

Improved methods of background adjustment are in development, because experience suggests

that the background intensities often overestimate the true background (see [17]). In any case,

spots with negative values forR or G are usually to weak and therefore of less interest. The

adjusted intensitiesR andG are the origin for further processing steps, like normalization.
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3.5 Normalization Methods

Depending on the experiment, normalization is used in different ways (see [22]). One has to

distinguish between

• within-slide normalization

• paired-slides normalization for dye-swap pairs

• multiple-slides normalization (scaling between slides)

In each case the set of genes used for normalization has to be defined. That can be

• All genes on a slide:Assuming that most of the genes on the array have constant expres-

sion and all expression values are normally distributed (this is rarely the case!), all genes

on the slide can be used for normalization. Using all genes offers the most stability for

estimating spatial and intensity-dependent effects (see [22]).

• Constantly expressed genes:In biological samples with high divergence, normalization

based on all genes may not be accurate. Often a set of housekeeping genes that show no

change across any conditions are used to normalize other genes. Unfortunately, house-

keeping genes often show sample specific bias and are typically highly expressed, so they

will not allow the estimation of dye-bias for less-expressed genes (see [21]).

• Set of control genes: Alternatively to housekeeping genes, a set of spiked controls

(clones from other organisms, e.g. Arabidopsis-clones spotted on human chips) or a

titration series of control sequences can be used. Control sequences should have equal

red and green intensities. Spots from titration series should show equal red and green

intensities across the whole intensity range. Typically, titration series are done with a

specially designed MSP (microarray sample pool) or genomic DNA (see [31]).

• Rank-invariant genes:An alternative method is to find an invariant set of genes per slide

and to use this set for the normalization of all genes: All genes are sorted in ascending

order according to their expression ratio. The position of a particular gene in this sorted
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list is its rank. A set of genes is called rank-invariant if their ranks are the same for red

and green intensities (see [42]).

3.5.1 Within slide normalization

If an experiment contains multiple slides, each of the slides must be normalized separately

(except dye-swap paired slides) before scaling between slides can be done.

3.5.1.1 Global normalization

This simplest normalization method assumes that the red-green bias is constant across the array

and the red and green intensities are related by a constant factor , i.e.R = kG. The goal is

to estimate a constant factorc and correct the ratios by simply substractingc that the mean

(or median) of the resulting intensity ratios is 1. This is equivalent to shifting the mean of the

log-ratios to zero.

log2

Ri

Gi

→ log2

Ri

Gi

− c = log2

Ri

kGi

(3.4)

A widely used choice for parameterc = log2 k is the mean or median intensity log ratio of the

particular slide.

3.5.1.2 Intensity dependent normalization

Several reports have shown that ratio values can have a systematic dependence on overall spot

intensity. The global normalization approaches does not account for this bias.Locally weighted

linear regression(lowess) or other robust linear regression methods can be used to remove such

intensity-dependent effects. An easy way to visualize intensity-dependent effects is to generate

a MA-plot for each slide to normalize. It can be seen that the majority of points lie on a curve,

showing that the red-green bias depends on the intensity of the spot. Lowess estimates this

curvature. It smoothes the MA-plot by subtracting the values of the estimated function from the

original M-values (see [8]).

log2

Ri

Gi

→ log2

Ri

Gi

− c(Ai) = log2

Ri

k(Ai)Gi

where Ai =
1

2
(log2 Ri + log2 Gi) (3.5)
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Herec(Ai) is the lowess-fit to the MA-plot for theith spot,i = 1, ..., N , andN is the number

of spots.

3.5.1.3 Normalization using control spots

In both of the above mentioned methods, all or most of the genes are used for normalization. If

a suitable set ofcontrol spots, arrayed on the same slide, is available (e.g. housekeeping genes,

MSP titration series, rank-invariant genes), these elements can be used to normalize all genes

on the slide. The set of control spots should cover the whole intensity range. Normalization

is done by fitting a curve to the control spots and correcting all genes with this function. This

is similar to intensity dependent normalization, but just using the control set to estimate the

curvature.

3.5.1.4 Composite normalization

This procedure combines normalization methods based on all genes and those based on only

MSP titration spots. At low spot intensities, normalization is done using all genes. For higher

intensities, normalization is based on the MSP control spots. This principle may yet be ap-

plied to experiments without MSP series, using housekeeping genes for normalizing very high

intensities and all genes for low intensities (see [21]).

3.5.1.5 Print tip group dependent normalization

Everysubgrid(or block) is printed with the same print-tip. There may exist systematic differ-

ences between the tips, like differences in length or tip-opening and abrasion. These variations

can cause spatial effects on the slide. Previously explained methods (global and intensity depen-

dent) can be adapted to account for this problem, simply applying them to every single subgrid

of one slide.

log2

Ri

Gi

→ log2

Ri

Gi

− cj(Ai) = log2

Ri

kj(Ai)Gi

(3.6)

wherecj(Ai) is the lowess-fit to the MA-plot for thejth subgrid and theith spot.i = 1, ..., N ,

andN is the number of spots.j = 1, ...,M , andM is the number of subgrids.
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Methods 3.5 Normalization Methods

After print-tip group normalization some scale adjustment between the subgrids may be

required to adjust differences in the spread of the log-ratios.

3.5.2 Paired Slides Normalization, Dye-Swap

A dye-swap pair consists of two slides. Every hybridization is done twice, with reverse dye

assignment in the second hybridization.

Slide 1 Mi = log2

Ri

Gi

= µi + ci and Slide 2 M ′
i = log2

R′
i

G′
i

= µ′
i + c′

i (3.7)

whereµi and µ′
i are the true log-ratios,ci and c′

i the dye-effects. Because of reversed dye

assignments one can expect:

→ µi = −µ′
i (3.8)

Assuming that the dye biases in the two slides are similar, thelog2-ratios for the two slides are

combined:
1

2
(Mi −M ′

i) =
1

2
(µi − µ′

i + ci − c′
i) = µi if ci = c′

i (3.9)

The normalizedlog2-ratios will then be

Mi = µ̂i =
1

2
(log2

Ri

Gi

+ log2

G′
i

R′
i

) =

√
RiG′

i

GiR′
i

(3.10)

Another possibility is to correct the single intensity values. Calculating

k =

√
RiR′

i

GiG′
i

(3.11)

and correcting the intensity values with this factork

Ri,corr → Ri and Gi,corr → kGi (3.12)
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Methods 3.6 Identifying differentially expressed genes

will lead to the same results as correcting thelog2-ratios directly, but gives the opportunity to

visualize the effects of normalization (e.g. with scatterplot, MA plot). This step is calledself-

normalization.

To verify the assumtion ofc = c′, the lowess-fits from both slides could be compared. If both

fits show similar trends, self-normalization should provide reasonable results.

3.5.3 Multiple slides normalization, scaling between microarrays

After within-slide normalization, the normalized log-ratios will be centered around zero. How-

ever, there are often substantial scale differences (different spreads in the log-ratios) between

microarrays, due to changes in PMT settings or other influences. To allow comparisons between

microarrays, it is useful to scale thelog2-ratios of a series of slides.

3.6 Identifying differentially expressed genes

One main goal of microarray experiments is to identify DE genes. Usually, it will be practical

to follow-up only a limited number of genes, a hundred say, so it is most important to identify

the 100 most likely candidates. This reduced data set of candidates can then be used for further

analysis (e.g. clustering techniques, see [13]). The complete list of all genes considered DE

may be too large to be followed-up and therefore of less interest (see [37]).

3.6.1 Simple detection methods

Not every microarray experiment provides replicate measures (replicated spots on slides, repli-

cated slides). In this case, it is impossible to apply statistics (e.g. t-test) for finding DE genes.

Simpler methods have to be used.
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Methods 3.6 Identifying differentially expressed genes

3.6.1.1 Fold change detection

In this simple approach a fixedfold-change-cutoff is used to find the genes most differentially

expressed. If a gene’s log-ratio exhibits the cutoff (e.g. two-fold), it is marked as significant.

3.6.1.2 Setting confidence limits

Slightly more sophisticated is to calculate themeanandstandard deviationof the distribution of

log-ratios. Then aconfidence limit(e.g. +/- two standard deviations) is defined to select genes

with significant log-ratio. This is equivalent usingZ-scoresfor the data set (see [26]). Such

Z-score criterium would be illustrated by a MA plot as two horizontal lines, on both side of the

zero-line. Points outside of the two lines would represent differentially expressed genes. For

example, using a Z-score of +/- 1.96 would find exactly 5 % significant genes per data set. This

is called 95 percent confidence level (see [1], [9]).

3.6.2 Statistical tests

Assuming that a series ofn replicate arrays is available, statistics can be applied to find genes

differentially expressed. First, an appropriate statistic ranks the genes in order of evidence for

differential expression. Second, a critical value is choosen for the ranking statistic above which

values are considered to be significant (see [3], [9]).

3.6.2.1 Student’s t statistic, t-test

Simply sorting the genes according to their mean log-ratio level (for every particular gene across

the replicate arrays) does not take account of the variability of the expression levels for each

gene. The variability of log-ratios over replicates is not constant for all genes, so genes with

larger variance may be detected as differentially expressed even if they are not. Ranking genes

according to the t-statistic incorporates these different variabilities.

For every genei in every particular replicated arrayj, the ratio-value can be written as

Mij = log2

Rij

Gij

(3.13)
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With the average over replicates

M i =
1

nr

∑
j

log2

Rij

Gij

=
1

nr

∑
j

Mij (3.14)

wherenr is the number of replicated slides, the t-statistic for every genei can be calculated:

ti =
M i

si/
√

nr

∀ i = 1...ngenes (3.15)

si is the estimator for the standard deviation for a particular genei:

si =

∑
j(Mij −M i)

nr − 1
∀ i = 1...ngenes (3.16)

This form of t-statistic might be used comparing two samples, A and B, spotted on the same

array.

Comparing two samples with different sample-sizes (e.g. comparison of two experiment

classes), the t-statistic turns to

ti12 =
M̄1

i − M̄2
i√

(s1
i )2

n2
1

+
(s2

i )2

n2
2

. (3.17)

wheren1 andn2 are the number of replicates provided for the first and second biological con-

dition to be compared.

Large absolute t-statistics suggest that the corresponding genes have different expression

levels in sample A and sample B. Note that replication is essential for such tests.

3.6.2.2 Mann-Whitney U-test

T-statistics assume that the data has agaussianor normal distribution. In practice, this is rarely

the case. Most distributions of microarray log-ratios tend to have heavier tails than a normal

distribution. So the number of differentially expressed genes might be over-estimated. Non-

parametric tests, like the Mann Whitney test, incorporate this fact and do not lead to false

estimations.
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3.6.2.3 Assigning significance, p-values

After computing the t-statistics, the genes of interest are found by testing thenull hypothesisof

equal mean expression levels in the two samples, A and B. This can be obtained by calculating

p-valuesfor each gene, using t-value and sample-size. (See appendix 2 forstatistical testing)

The null hypothesis is rejected, if a gene’s p-value falls below a certain threshold (alpha

level). Then the gene is marked as significantly DE.

A common alpha-value is 0.05, which denotes a 5 % type I error (false positive rate) rate: 5

genes out of 100 are found significant, even if they are not.

3.6.2.4 Adjusted p-values, Bonferroni step down

One concern in applying hypothesis testing to microarrays ismultiple testing. Testing many

hypothesis (e.g. 30000), the probability of getting false positive hits can increase sharply. One

method for controlling the type I error rate areadjusted p-values. Among many others, the

Bonferroni methodis the best known (see [34]). It simply divides the alpha-level by the number

of hypothesis tests. This single step adjustment assumes normality of the data and therefore

tends to be very conservative. Other more complex methods (e.g. Westfall and Young step

down) exceed the scope of this thesis.

3.7 Usability testing

3.7.1 Background

The basic idea behind usability testing is simple. If one wants to know wheter a software or

a web site is easy enough to use, some people are told to use it and note where they run into

trouble. This information can be used for fixing bugs and improvements. Usability test should

be perfomed on the one hand by the targeted users and on the other hand by users not familiar

with the field. But it is much more important to test early and often. Even the worst test with
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Methods 3.8 Software development methods

the wrong user early in the project will show always more valuable results than a sophisticated

test near the end of the development (see [38]).

3.7.2 How many users

In most cases, the ideal number of users is three, at most four (see [38]). The first three users

are very likely to detect the most significant problems, and with only three users it is simple to

do further test rounds. After each round one can improve and fix bugs.

3.8 Software development methods

3.8.1 Java

One precondition was the use of a platform-independent programming language. Java (see [41])

offers this attribute. For program development Borland’s JBuilder 7.0 has been used (see [15]).

Other IDEs would be Forte4Java (see [40]) or netBeans (see [7]).

3.8.1.1 Java Language

Java is a simple, platform-independent, object-oriented, distributed, interpreted, robust, archi-

tectureneutral, multithreaded high-level programming language. The Java programming lan-

guage is unusual in that a program is both compiled and interpreted. A Java compiler generates

an architecture-neutral object file executable on any processor supporting the Java run-time sys-

tem. The object code consists of bytecode instructions designed to be both easy to interpret

on any machine and easily translated into native machine code at load time. So compilation

happens just once, interpretation occurs each time the program is executed.

3.8.1.2 The Java Platform

A platform is the hardware or software environment in which a program runs. The Java platform

differs from most other platforms in that it’s a software-only platform that runs on top of other
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Figure 3.6:The compiler translates a program into an intermediate language called Java byte-
code. The interpreter parses and runs each Java bytecode instruction on the computer. Compi-
lation happens just once, interpretation occurs each time the program is executed.

hardware-based platforms (although there are special processors which execute Java bytecode

directly). The Java platform has two components:

• Java Virtual Machine (Java VM). It’s the base for the Java platform and is ported onto

various hardware-based platforms.

• Java Application Programming Interface (Java API) The Java API is a large collection

of software components that provide many useful capabilities, such asgraphical user

interface(GUI) widgets. The Java API is grouped into libraries of related classes and

interfaces; these libraries are known as packages.

Figure 3.7:A program running on the Java platform. The Java API and the virtual machine
insulate the program from the hardware.

3.8.2 JClass Libraries

JClass helps to build Java applications by offering Java developers versions of the components

required by many standard applications, such as charts, tables, and reporting/printing (see [39])
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3.8.2.1 JClass Field

JClass Field is a set of Java components (e.g. combo boxes, spin fields, text fields) that permits

the collection, validation, and display of textual, calendar, and numeric data. Built-in validation

methods can be applied for various consistency checks on the information and to give the end-

user visual and audible feedback when the validator detects an incorrect entry.

3.8.2.2 JClass Elements

JClass Elements is a broad collection of GUI components and utility classes designed to aug-

ment Java Swing’s basic offerings. And it’s easy to adapt them to the programmer’s custom

needs. E.g. the Wizard Creator lets one create and manage a wizard-style group of user-dialogs.

3.8.2.3 JClass Chart

JClass Chart is a charting/graphing component written entirely in Java. The chart component

displays data graphically in a window and can interact with a user. Different chart types (e.g.

Scatter plot, Pie charts, Bar charts) are available.

3.8.3 TUGUtilities Library

The TUGUtilities library (developed by the Bioinformatics Group, TU Graz) provides several

useful software utilities. The library makes it easy for other developers to access common used

functions (e.g. mathematics, statistics, logging).
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Chapter 4

Results

This chapter presents results of organizing, normalizing and analyzing microarray experiments

using the software tool, which has been developed in the course of this work.

4.1 ArrayNorm

ArrayNorm is an application which provides tools for visualizing, normalizing and analyzing

data from a wide range of possible microarray experiment designs. The features were tested,

using data from former experiments.

Figure 4.1:First step in setting up a new experiment. Defining general parameters, like name
and sourcefile vendor.
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Results 4.1 ArrayNorm

4.1.1 Loading data, defining the experimental design

Starting a new experiment requires information about general information, sources of data and

experimental design. A wizard leads through these steps.

Figure 4.2:Selecting all source-files

4.1.1.1 Experimental setup

Every new experiment can be attached with general informations, like name, number ofexperi-

mental classes1, sourcefile vendor, etc. Defining the number of classes is not definite, it may be

changed afterwards.

Figure 4.3: Experimental Design: defining relationships between slides, marking dye-
assignments,...

1see glossary
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4.1.1.2 Selecting source files

Since the number of possible microarrays is not limited, the wizard provides a file list, to which

multiple files can be added. After selection, all files are numerated in the list, without informa-

tion about class-affiliation or dye-assignment. Note that all files in one experiment must have

the same number of spots.

4.1.1.3 Experimental design

For normalization and analysis tasks, it is necessary to define relationships between microar-

rays. For example, which slides belong to the same class, which are reverse-labelled and if there

are dye-swap pairs available. All these informations will be used for normalization, scaling be-

tween slides and replicate handling. For every hybridisation the user can edit

• the assignment to a class.

• whether the particular slide is reverse-labelled or not.

• the assignment of a dye-swap partner, if available.

• an alias-name to appear in the data-tree.

Figure 4.4:Editing class names.
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Figure 4.5:Data organization tree. After uploading, the slides are arranged according to their
classes. This experiment features three classes, each holding one dye-swap pair (indicated by
the colored points and prefixes). The microarray popup-menu is opened by a rightclick on the
slide.

4.1.1.4 Data organization tree

After setting up the experiment, all data are organized by a graphical tree, reflecting the structure

of the experimental design.

• The experiment is splitted intoclasses, each class represents a biological condition (e.g. a

timepoint of a timecourse experiment). The classes are named as specified in the wizard.

• Every class holds its associated slides, marked with colors and prefixes. A red point

indicates normal dye-assignment, a green point indicates a reverse-labelled microarray.

The prefix pX states that the particular slide belongs to theXth dye-swap pair. A dye-

swap pair always contains one normal and one reverse labelled slide. Naturally, a dye-

swap pair can only include slides from the same class. Multiple dye-swap pairs within a

single class are possible.

• The ’All Plots’-folder holds plots created by the user for fast navigation between all

opened plots.
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4.1.1.5 Accessing methods

In principle, all actions or methods can be accessed by

• Rightclicking a tree’s component or folder. Depending which kind of folder (exper-

iment, class, slide, results,...), a menu pops up with possible actions for the particular

component.

• Buttons. Especially for Mac users. For some functions (e.g. normalization), the wanted

tree component must be preselected by a mouseclick. Warning dialogs will inform the

user about incorrect or impossible selections.

4.1.2 Visualization

To get an idea about the condition of the data sets or the effects of different normalization meth-

ods, means of graphical display can help assessing the success of the experiment and choosing

the analysis tools.

4.1.2.1 Array view

The Array Viewer features false-colored images for the red and green channel per slide. It

does not represent the scanned microarray output image (e.g. provided by GenePix Pro), but a

diagnostic plot showing

• the arrangement of print-tip groups.

• rough information on spatial artifacts (e.g. scratches)

• highlighted control-spots, orange

• bad quality spots filtered out by GenePix-criterium, grey

The coloring is automatically adapted to the maximum intensity occuring in the particular chan-

nel.
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Figure 4.6:ArrayView. This cutout from a 43.000-spots slide shows the arrangement of sub-
grids, how the controls are situated (orange dots) and the distribution of bad spots (grey colored
spots).

4.1.2.2 Scatterplot and MA-plot

Plotting thelog2R intensities versus thelog2G intensities is a common way to display single

slide expression data. An alternative is to transform the axes to introduce intensity information

(see figures 3.2 and 3.3).

4.1.2.3 Ratio histogram

Frequency histograms counts the number of ratios for every intensity value and provides infor-

mation about the distribution of the ratios (see figure 3.5).

4.1.2.4 Boxplot

Boxplots are useful for comparing ratio-values between different groups of data. That can be

• different print-tip groups on a single slide.

• all slides contained in one experimental class.

Especially, they give a good display of normalization effects (see figure 3.4).
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Figure 4.7:ArrayNorm GUI. All information is shown by an experiment tree, representing the
experiment design. Red points mark normally labelled slides, green points reverse labelled
slides. The prefix p0 indicates that this slide belongs to dye-swap pair 0.

4.1.2.5 Capturing plots

Every open plot can be exported to a file. Possible encoding formats are PNG and JPEG. To

capture a plot, select its frame and press the ”Capture” button. A filechooser will open for

editing filename and encoding-format.

4.1.3 Background correction

Background subtraction can be done separately for each class or for the whole experiment at

once. If a negative intensity value (background> foreground intensity) occurs, the particular

spot will be marked bad and therefore ignored. Generally, this case will not arise, because

pre-filtering (e.g. flagging in GenePix) checks for bad quality spots (see [24]).
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4.1.4 Normalization methods

The user can choose among several normalization methods, depending on the experimental

design.

4.1.4.1 Available methods

• Global-median normalization

• Global-median print-tip group dependent normalization

• Intensity-dependent normalization (Lowess fit)

• Normalization using control-spots

• Paired-slides normalization (dye-swap experiment)

4.1.4.2 Applying normalization

All methods can be applied for

• one single class.The chosen method will be performed on every slide belonging to the

particular class. Dye-swap normalization is only carried out, if dye-swap pairs exist.

• the whole experiment. All classes will obtain the same method. This is the recom-

mended way to keep classes comparable for analysis.

Using different normalization methods within a class is not possible. It would introduce addi-

tional errors and inhibit reasonable analysis. In some cases it is necessary to use different nor-

malization methods for different classes (e.g. one class includes dye-swap pairs, other classes

just replicated slides). But this should always be an exception. Different methods treat data in

different ways and that makes comparisons less meaningful.
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Figure 4.8:The user can choose the wanted method out of three groups: a) using all spots, b)
using control spots, c) using dyeswap pairs.

4.1.4.3 Normalization examples

Two examples illustrate the normalization step.

• Paired-slides normalization: If the currently loaded experiment contains dye-swap pairs,

the use of self-normalization would be recommended. Each pair will be corrected indi-

vidually. If no pairs were predefined, the reverse-labelled slides will be averaged for

Figure 4.9:Boxplot after self-normalization. The boxes have been shifted to the zero-line.

building a template. This template is used asdye-swap partnerfor every normal-labelled
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slide. Thus, the number of self-normalizations within a class equals the number of nor-

mal labelled slides. An informative way to illustrate the effect of self-normalization are

boxplots. After normalization, the medians of log-ratios should be shifted to zero. Addi-

tionally, the plot of the normal-labelled slide should be exactly the reversed to its reverse-

labelled partner.

• Normalization with control-spots: Providing control-spots, slides can be normalized by

this subset of genes. This assumes that the gene-names of the controls are marked with

a specific prefix (see Appendix A for ’Marking control genes’). Using the Levenberg-

Figure 4.10:MA plot: The highlighted spots are controls. The sharp edge on the right end is
due to scanner saturation.

Marquardt algorithm, a polynomial function is fitted to the control spots (see [18]). This

function is used to correct all other genes on the slide. The idea is similar to intensity-

dependent normalization, just using another set of genes to fit the function. A common

way is to apply Lowess to the set of controls. But this can be critical with a small amount

of control spots. The example-slide (43000 spots, 1900 controls) just has 150 good-

quality controls, after serious quality-filtering in GenePix Pro. That would be too little

for Lowess.
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Figure 4.11:MA plot: The curve is the Levenberg-fit to the control spots. It follows a polynomial
function of3rd order.

4.1.4.4 Resetting the data

Having applied any changes to the data (like background subraction, normalization), one might

undo all steps. By clicking ’Reset Experiment’ on the experiment’s popup-menu the origin will

be reloaded, all changes will be cancelled. Note that already opened plots will keep unaffected.

4.1.5 Finalize, replicate handling and generating results

Before analysis can be carried out, some steps have to be done:

• Replicate handling. If there are replicated spots on a single slide, find and average them.

• Scaling between slides.All slides within a class will be rescaled to ensure comparability.

• Merging slides. If replicated slides within a class are available, average them. The results

are ratio-values for each gene on the slide.

• Data transformation. The ratios can belog2-transformed or not.

• Export to file. The resulting values (i.e. ratios orlog2-ratios) can be exported to a file,

which is suitable for further software (e.g. Genesis, see [13]).
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These steps are applied to each class. For each gene, the results contain values for ratios,

standard-deviations and sample-size. All these values will be needed for statistical testings.

Guided by a wizard, the user can define the replicate treatment, the transformation of ratios

and if control spots should be printed to the file or not. A ’Results’-icon added to the data-tree

indicates that results are available and analysis can be performed.

4.1.6 Determining differentially expressed genes

4.1.6.1 Simple methods

The simple methods address experiments with no or insufficient use of replication (i.e. repli-

cated slides).

• Defining a fixed fold-change cut-off:Every gene in every class will be marked as DE,

if its absolute intensity-ratio exceeds this threshold. In experiments with more than one

class, a gene will be exported to the output file if it is DE in any of the classes. The user

can edit thelog2-scaled cut-off. For example, a value of1.0 denotes a two-fold change in

expression.

• Setting a confidence limit: For every gene in every class, z-values are computed and

compared to a user-defined cut-off score. Those genes with higher z-scores will be

marked and treated as above.

Figure 4.12:If a gene’s log2-ratio exceeds 1.5, it will be marked as DE. A short dialog will tell
the user how many genes are detected.
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4.1.6.2 Statistical tests

Providing a sufficient number of replicates for each gene, reliable t-values can be computed.

This can be done

• within a single class:Every log-ratio within this class is tested for significance.

• comparing two particular classes: The log-ratios of two classes are compared. If a

log-ratio shows significant differences between the two classes, the particular gene will

be marked as DE.

• comparing all classes, loop design:Each class is compared with its neighbor class: The

first with the second, the second with the third, and so on. Havingn classes, the last

comparison is classn vs. class1. The number of t-tests per gene will ben. A gene will

be marked as DE, if at least one t-test shows a significant difference in log-ratios.

• comparing all classes, reference design:By default, the first class is the reference. The

log-ratios of all other classes are compared to the reference’s log-ratios. Havingn classes,

the number of t-tests per gene will ben− 1. Again, at least one t-test has to be significant

to mark a gene as DE.

With aid of t-value and sample-size, p-values are computed for every gene. If a particular gene’s

p-value falls below a certain user-defined alpha-value, it is marked DE. To account for multiple

testing, it is possible (and recommended) to adjust the p-values according to Bonferroni’s step-

down method.

4.1.6.3 Output files

Having figured out DE genes, the gene-names, gene-IDs andlog2-ratio values (or optional the

p-values) for every class can be saved to a text-file. The file format is compatible with the

”Stanford Flat File” format (see [35]) and can be loaded with the Genesis clustering software.
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4.1.7 Extensibility

4.1.7.1 Adding new normalization methods

It is easy for developers to implement new normalization algorithms (e.g. local-mean methods)

and add them to the existing software. A XML configuration-file defines the names and the

according Java class-names of all available methods. After choosing the normalization method

by the user, the particular class is loaded at runtime.

4.1.7.2 New source-file formats

Different sourcefile formats (e.g. GenePix, Agilent) need different file parsers. All file formats

and their parser-classes are also declared within a XML file and can easily be extended.

4.2 Usability test

Four people (two biologists, two software-developers) took part in the usability test. The test

contained a list of predifined tasks (loading and defining an experiment, creating plots, normal-

ization and analysis) and the verbal and written evaluation of the user.

4.2.1 Results of the test

• The overall design of the GUI was assessed well, due to its similarity to Genesis. Data

loading and defining the experiment’s design caused some problems for users without

knowledge about microarray design (defining dyeswap-pairs). It was intuitive for the rest

of the test persons. The data tree was understandable for all testers.

• Creating plots and showing reports was easy to use for all persons, however the handling

(re-scaling, closing, labelling of the axes) of the plots was not perfect due to slow repaint-

methods. Accessing the functions by right-clicking the tree-elements was much more

easier than pressing the particular buttons at the toolbar.
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• Why background correction should be performed was not intuitive. Experienced users

assumed that this is done by GenePix. Choosing the Normalization method was very

easy for all users, which are familiar with the process. Finalizing and handling of the

replicates caused some misunderstanding in one case, but it was rated well by the people

who helped to define the specifications of the software.

• Some users proposed to provide a kind of ’guideline’ or ’workflow display’ which should

help to find through the normalization process. Also a ’nice to have’ feature would be to

mark already normalized classes (or slides) with different folder-icons.

Description of task Rating
First impression of the GUI 1.5
Loading of GPR-files 1.75
Definition of experimental design 1.75
Data Tree: understanding? 1.5
Opening plots and reports 2.5
Background-Correction of all slides 1.5
Normalizing using dyeswap-pairs 1.5
Finalize and Replicate Handling, log2-transformation2.0
Analysis (find DE genes) using foldchange detection1.75
Saving the list of DE genes 1.5
Overall impression: usability and functions 1.5

Table 4.1: Usability-test: tasks and their ratings.

Concluding, the use of ArrayNorm and its features was very intuitive for all persons with

knowledge about the sense of normalization and data analysis. The test gave important sug-

gestions for improvement, in the meantime most issues have been solved, but some are still in

progress.
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Chapter 5

Discussion

In this thesis, a platform-independent and versatile software-tool for normalizing and analyzing

microarray experiment data was developed. The presented program handles a wide range of

possible experiment designs, from simple single-slide experiments to time-course experiments

with replicated dye-swap pairs. Any number of microarray-resultfiles can be uploaded, special

attention was given to manage data from GenePix gpr-files.

• Since experimental design is an important concern, ArrayNorm lets the user define re-

lationships between single microarrays or divide the experiment into classes of microar-

rays. It can deal with replicated spots on single slides, replicated slides, control-spots and

reverse-labelled slides.

• Besides background-subtraction, ArrayNorm provides several means of normalization.

The possibilities are global median, lowess function for intensity dependent normaliza-

tion, self-normalization for dye-swap pairs and normalization with control spots using

a Levenberg-Marquardt fitting-algorithm. Global and lowess methods can optionally be

performed for single subgrids to get rid of spatial effects.

• The effects of normalization can be observed by capable graphical plots like scatterplots,

MA-plots, boxplots and histograms. All plots can be done before and after normalization.

The ArrayView helps to visualize spatial effects, bad spots and control elements within a

49



Discussion 5.1 Potential improvements

single slide. Simple slide-reports give an idea about the quality of the slides (percentage

of good spots, overall intensities, etc.). Dealing with bad spots and missing values can

be crucial when looking for marginal differences in data. Provided that proper quality-

prefiltering was applied (e.g. flagging bad spots in GenePix), ArrayNorm excludes bad

spots from all normalization, replicate handling and analysis.

• Although clustering methods are widely used for analysis, it is often useful to reduce the

amount of data to a subset of genes, usually to those which are most variable between

samples. To detect differentially expressed genes, the software provides simple fold-

change detection and additionally statistical tests (t-test, Mann-Whitney). Detected target

genes can be printed to a file, compatible to other analysis-software (e.g. Genesis).

5.1 Potential improvements

Since currently new methods for normalization and analysis are developed, it may be useful to

adapt the ArrayNorm software to these needs. Possible improvements would be:

• Compatibility with other sourcefile-vendors (Affymetrix,...)

• Handling of multiple experiments at once

• Further normalization methods, e.g.Local mean(see [16])

• Improved methods for scaling between slides

• Automatic detection and disabling of bad-quality slides

• More sophisticated methods for detection of DE genes

• Correlation plots for testing replicated slides

• Additional diagnostic plots (e.g. QQ-plot)

• Database-connectivity to MARS1

1see glossary
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Discussion 5.2 Conclusions

• ANOVA

• User management

• Web-interface for uploading and normalizing of data

5.2 Conclusions

5.2.1 Experimental design

To give experimenters a short guideline about planning an experiment, some items should be

discussed, although it is not possible to state universal recommendations for all situations at

once. In cases where two mRNA samples, A and B, should be compared, it is always more

accurate to hybridize A and B together on the same slide rather than comparing them indirectly

by a reference sample. Additionally, in suchdirect comparisonsit is recommended to plan

dye-swap pairs. For time-course experimentsa loop-design is a good choice. In experiments

where the goal is to compare different mutant-types with a wild-type, it is suggested to use

reference design with the wild-type RNA as common reference (see [33], [27], [43]).

5.2.1.1 Replication

Replication provides the ability to use formal statistical tests to decide whether log-ratios are

significantly different to zero. For example, t-tests are applicable to analyzing data from repli-

cate slides. The type of replication used in the experiment affects the precision of the results:

• To achieve averages of independent data and to generalize conclusions,biological repli-

cateswould be the right choice.

• Technical replicateshelp to reduce variability in measurement.

A combination of both types would be best.
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Discussion 5.2 Conclusions

5.2.2 Preprocessing issues

Testing different normalization-methods, one would recognize the major role of dataprepro-

cessing (e.g. using GenePix Pro). Attention should be given to quality-filters for finding and

flagging bad spots, because well filtered data enables better normalization-performance. During

saturated spots will corrupt the fitted function and as well the results. Using different PMT-

settings for Cy3- and Cy5-channels is less crucial and can be balanced by normalization. Alter-

ing the PMT settings within an experiment would render the slides incomparable (see [24]).

5.2.3 Choice of normalization method

The choice of normalization depends not only on the experimental design but also on the data

quality. For instance self-normalization using two slides with a large number of bad spots can

cause even much more missing values in the results. Although global normalization is not as

accurate as self-normalization, it will be more stable in such cases. Blind trust in lowess-fitting

can also be misleading. It detects any curvature in the MA-plot as systematic bias even if the

shape results from biological conditions.

Anyway, once a normalization method is choosen, it is recommended to keep it up for all classes

and all slides.
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Appendix A

Labelling Control Genes

A simple strategy to mark control-elements is to add a well defined prefix to the gene-name.

Special software-tools can use these information to identify control-spots and make use of it. To

distinguish between different types, a list of possible control-elements and appropriate prefixes

was considered. This list should be binding if any control-elements are spotted to microarray-

slides.

Prefix Description
C Control
CN negative control
CPG pos. control - Genomic DNA
CPH pos. control - housekeeping genes
CPS pos. control - spike control
CPM pos. control - microarray sample pool (MSP)

Table A.1: Table of possible prefixes. A prefix is added to a gene-name.
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Appendix B

Submitted Paper

Pieler R., Hackl H., Sanchez-Cabo F., Thallinger G. and Trajanoski Z., ArrayNorm: Com-

prehensive normalization and analysis of microarray data. Application Note. Submitted to

Bioinformatics.

Abstract ArrayNorm is a user-friendly, versatile and platform independent Java application

that comprises tools for the normalization and analysis of microarray data. A variety of nor-

malization options were implemented to remove the systematic and random errors in the data,

taking into account the design and the particularities of every slide. In addition, ArrayNorm

provides a module to statistically identify with significant changes in expression.
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Appendix C

GenePix Flagging Criteria

Bad-quality spots on a microarray heavily affects all data analysis steps and the experiment’s

results. Most important is to mark bad spots to remove them from further analysis.

The GenePix Pro software features a ’Flag feature’ dialog box, where multiple criterias can

be linked to a boolean query. Here is one example for such a query.

[Flags] = [Bad] Or

[Flags] = [Absent] Or [Flags] = [Not

Found] Or

[F635 % Sat.] > 10 Or

[F532 % Sat.] > 10 Or

[Sum of Medians] < 1000 Or [Sum of Means] < 1000 Or

([% > B635+1SD] < 55 Or

([% > B532+1SD] < 55 Or

(([F532 Mean]-[F532 Median])/[F532 Mean])> 0.2 Or (([F635

Mean]-[F635 Median])/[F635 Mean])> 0.2
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GenePix Flagging Criteria

Every single spot on a microarray has to pass these criteria, otherwise it would be marked

as ’bad’.

This reference-query was developed by Hubert Hackl and is used for the majority of microarray-

experiments in theTU-Graz Bioinformatics Group(see [19]).
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Appendix D

Usability test

D.1 ArrayNorm - Usability Test

D.1.1 Task

A complete microarray experiment

• 3 experiment classes

• each containing one dyeswap-pair (6 slides overall)

should be loaded into the program. All possible plots should be opened, one will be captured

as picture. After background-correction, normalization with dyeswap-pairs should be applied

to the experiment. The effects of normalization can be illustrated by rerunning of the plots,

especially boxplots. After finalizing and replicate handling, DE genes should be found by

simple foldchange detection. Export of the generated gene list to a textfile.

This usability test is not for testing the user (you). It just helps the developer to detect and fix

bugs or insufficiency.

D.1.2 The test-run

Please try to do all following steps and rate them.
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Usability test D.1 ArrayNorm - Usability Test

• First impression of the GUI

• Loading of GPR-files

• Definition of experimental design

• Data Tree: understanding?

• Opening plots and reports

• Background-Correction of all slides

• Normalizing using dyeswap-pairs

• Finalize and Replicate Handling, log2-transformation

• Exporting of the results-file

• Analysis (find DE genes) using foldchange detection

• Saving the list of DE genes

• Overall impression: usability and functions

D.1.3 Reclamations and suggestions
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