
Fachhochschul-Diplomstudiengang
Bioinformatik

4232 Hagenberg, Austria

Development of a

Web-based application for managing

and analyzing real-time PCR experiments

Diplomarbeit

zur Erlangung des akademischen Grads
Diplom-Ingenieur (Fachhochschule)

eingereicht von

Stephan Pabinger

Betreuer: DI Dr. Robert Molidor, TU Graz

Begutachter: DI (FH) Peter Kulczycki

Juni 2006

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig ver-

fasst, keine anderen als die angegebenen Quellen und Hilfsmittel verwendet, mich

auch sonst keiner unerlaubten Hilfe bedient, und diese Arbeit weder im Inland noch

im Ausland in irgendeiner Form als Prüfungsarbeit vorgelegt habe.

ORT, DATUM STEPHAN PABINGER

Abstract

Real-time PCR is one of the most important methods used in functional genomics.

As one of the leading assays it has a large dynamic range, great sensitivity, and

avoids the need for post-PCR processing. The requirement for analyzation, in oder to

get significant results, produced a number of different analyzers, which mostly run

in a separate software. Drawing conclusions is often done by comparing analyzed

results of different experiments and usually consists of dealing with several printed

sheets that are hard to handle, store, and organize.

This thesis describes the design and implementation of an application capable of

managing and analyzing all relevant real-time PCR data. Based on the three tiered

J2EE platform it is developed as a Web application using a model driven architecture

approach. It allows the storage of general component descriptions, plate definitions,

fluorescence measurements, and analyzer results.

Files produced by PCR machines contain information about the plate and the de-

tected fluorescence measurements. The developed application integrates a parser

that is able to read in those files and therefore provides a rapid and error-free inser-

tion of important data. A newly developed system using Web 2.0 features allows to

graphically view the inserted fluorescence measurements.

Already existing analyzers were integrated into the system and can be launched

from a central point in the application. A plug-in manager ensures that new ana-

lyzers can be added to the system without having to change existing parts in the

application. Results generated by analyzers can be easily compared and exported

to files for further analyses. User interactions are managed using the Model-View-

Controler framework Struts and Message Driven Beans are used to perform long

lasting business tasks, which run in the background.

The incorporated parser and the possibility to analyze one’s date using several dif-

ferent analyzers in combination with an user-friendly interface provides an applica-

tion capable of managing, storing, comparing, and analyzing real-time PCR exper-

iments. All these features combined in one single application make up an unique

tool the certainly improves the daily work of biologists.

Keywords: real-time PCR, qPCR, analyzers, Web 2.0, J2EE

Kurzfassung

Real-time PCR ist eine der wichtigsten Methoden im Bereich der »functional ge-

nomics« und zeichnet sich durch den Entfall von PCR Nachbehandlungen, ihrem

großen dynamischen Bereich und ihrer hohen Sensitivität aus. Da es notwendig ist

detektierte Daten zu analysieren, sind eine Reihe von Analyseprogrammen verfüg-

bar. Bestimmte Aussagen können oft nur durch das Vergleichen von Resultaten ge-

troffen werden, was oft mit ausgedruckten Datenblättern durchgeführt wird. Diese

sind meistens schwer zu handhaben, archivieren und organisieren.

Diese Diplomarbeit beschreibt das Design und die Implementierung einer Applika-

tion die für die Verwaltung und Analyse von real-time PCR Daten erstellt wurde.

Basierend auf der dreischichtigen J2EE Plattform wurde sie mit Hilfe der Model-

Driven-Architecture entwickelt. Sie ermöglicht das Speichern von generellen Kom-

ponenten, Platten-Definitionen, Fluoreszenzmesswerte und Analyse-Ergebnissen.

Dateien, die durch die PCR Maschine erzeugte werden, enthalten aufgezeichnete

Fluoreszenzwerte und Informationen zur verwendeten Platte. Durch die Integration

eines Parsers ist es möglich, Informationen, die diese Dateien enthalten, schnell und

fehlerfrei einzulesen. Ein neuartiges System, welches die Vorteile von Web 2.0 nutzt,

ermöglicht die graphische Darstellung der eingelesen Fluoreszenzmesswerte.

Existierende Analysatoren wurden in das System integriert und können von einem

zentralen Punkt in der Applikation gestartet werden. Ein eingesetzter Plug-in Ma-

nager ermöglicht ein einfaches Hinzufügen neuer Analyseprogramme, ohne dass

existierende Teile des Systems verändert werden müssen. Durch eine übersichtliche

Darstellung können analysierte Resultate einfach verglichen und mithilfe eines Ex-

portmechanismus in Dateien abgelegt werden. Benutzerinteraktionen werden durch

das Model-View-Controler framework Struts behandelt und der Einsatz von Messa-

ge Driven Beans dient zur Abarbeitung lang andauernder Aufgaben.

Der eingebaute Parser und die Möglichkeit Daten von verschiedenen Programmen

analysieren zu lassen in Kombination mit einer benutzerfreundlichen Oberfläche er-

gibt eine Applikation, die zur Verwaltung, Speicherung, Auswertung und Analyse

von real-time PCR Experimenten dient. All diese Eigenschaften wurden in einem

einzigen Programm kombiniert und bilden ein Werkzeug, das zweifellos die tägli-

che Arbeit von Biologen erleichtern wird.

Schlüsselwörter: real-time PCR, qPCR, Analyse, Web 2.0, J2EE

Acknowledgments

First of all, I want to thank Dr. Robert Molidor for the many insightful conversations

during the design and development stages of the application, and for the many help-

ful comments and suggestions on the thesis’s text.

Special thanks go to Prof. Zlatko Trajanoski for giving me the possibility to do my

diploma thesis at the Institute for Genomics and Bioinformatics—TU Graz.

Then, I want to thank my supervisor DI (FH) Peter Kulczycki from the Upper Austria

University of Applied Sciences in Hagenberg for his advises and design suggestions

on writing this paper.

I would like to thank Katharina Wimmer and Robert Smith for proofreading my thesis

and for giving me many valuable writing hints.

Finally, I would like to thank my family for always supporting me during my whole

life.

Stephan Pabinger

Contents

1 Introduction 1

2 Biological Background Information 3

2.1 DNA, mRNA . 3

2.2 Functional Genomics . 4

2.3 Polymerase Chain Reaction . 5

2.4 Real-time PCR . 8

3 Software Development Technologies 11

3.1 Standards . 11

3.1.1 Model Driven Architecture . 11

3.1.2 Unified Modeling Language . 12

3.1.3 XML Metadata Interchange Format 13

3.2 Java 2 Enterprise Edition . 13

3.2.1 Client Tier . 14

3.2.2 Web Tier . 14

3.2.2.1 Servlet . 15

3.2.2.2 JSP . 15

3.2.3 Business Tier . 16

3.2.3.1 Enterprise JavaBeans 16

3.2.4 Enterprise Information System Tier 17

3.2.5 J2EE Patterns . 17

3.3 Web Technologies . 18

3.3.1 Struts . 18

3.3.1.1 The Controller . 19

3.3.1.2 The View . 19

3.3.1.3 The Model . 20

3.3.1.4 Features . 20

3.3.2 Ajax . 20

CONTENTS vii

3.3.3 Direct Web Remoting . 23

3.4 Code Generation . 24

3.4.1 AndroMDA . 25

3.4.1.1 Cartridges . 27

3.4.1.2 Velocity Templates . 27

3.4.2 XDoclet . 28

3.5 Development Tools and Libraries . 29

3.5.1 JFreechart . 29

3.5.2 MagicDraw . 30

3.5.3 Eclipse . 30

4 Institute Libraries 32

4.1 Parser . 32

4.2 Analyzers . 33

4.2.1 AnalyzerSoFar . 34

4.2.2 AnalyzerRutledGene . 34

4.2.3 AnalyzerMiner . 34

4.2.4 TAQAnalyzer . 35

4.2.5 LinRegAnalyzer . 35

4.3 Genome Usermanagement . 35

5 Requirements and Design 37

5.1 Detailed Requirements . 37

5.2 Typical Workflow . 38

5.3 UML Diagram . 39

5.3.1 Entity diagram . 40

5.3.2 Report diagram . 42

5.3.3 Service diagram . 43

6 Implementation 45

6.1 Report . 45

6.1.1 List view . 47

6.1.2 Detail view . 49

6.1.3 Struts Action/Form . 50

6.1.4 Stateful session bean . 50

6.2 Parser . 51

6.2.1 Run (JSP/Action) . 51

6.2.2 RunParseFileService . 51

6.2.3 JSP—ParserResult . 54

CONTENTS viii

6.3 Analyzers . 57

6.3.1 Choosing and starting analyzers 57

6.3.2 Presenting results . 59

6.4 Chart generation . 61

6.5 General webdesign . 68

6.5.1 Run . 68

6.5.2 Plate . 69

6.5.3 Well . 70

6.5.4 Primer . 72

6.5.5 Instrument setting . 73

7 Discussion 75

7.1 Usability testing . 76

7.2 Perspectives . 78

A User Requirements Document 80

A.0.1 Realtime RT-PCR . 81

A.0.2 Project goal . 82

A.0.3 Software Environment . 82

A.1 Project realization . 83

A.1.1 Introduction . 83

A.1.2 Basic units . 83

A.1.2.1 Protocol . 83

A.1.2.2 Provider . 83

A.1.2.3 Software . 83

A.1.2.4 Hardware . 83

A.1.2.5 Upload Zone . 84

A.1.3 Experiment . 84

A.1.4 Run . 84

A.1.4.1 Sample description 84

A.1.4.2 RNA extraction . 84

A.1.4.3 cDNA creation . 85

A.1.4.4 PCR . 85

A.1.4.5 Results . 85

B Class diagram 87

C Usability testing 89

C.1 Task-list and test-score . 89

CONTENTS ix

C.2 Overall questionnaire . 92

Figures 93

Tables 95

Bibliography 99

Chapter 1

Introduction

A gene is a hereditary unit consisting of a DNA sequence that determines a particu-

lar characteristic in an organism. Since the Human Genome Project has discovered the

complete human genome sequence, the composition of each gene is known. How-

ever the sequence alone is worthless without knowing the corresponding function-

ality.

Functional genomics is a field of molecular biology trying to describe genome func-

tions by making use of the vast amount of data. Amongst other high-throughput

techniques like DNA micro-arrays and mass spectrometry, real-time PCR has be-

come a major method for answering the newly arisen questions.

Polymerase chain reaction (PCR) is a molecular biology technique for replicating

DNA sequences. Real-time PCR is an advanced PCR that measures the amount

of generated DNA during the duplication. By observing the amplification process

one is able to calculate the original amount of DNA and therefore draw conclusions

about the gene’s functionality.

Data generated by real-time PCR experiments need to be analyzed before conclu-

sions can be drawn. A lot of different algorithms have been developed that have

unique ways of correcting the collected data and mostly run as a separate software

tool. Moreover many comparisons between results of experiments are needed in

order to get the desired answers.

All these difficulties equate to a demand for a centralized system capable of man-

aging and analyzing real-time PCR data. The application developed here is able to

administer all the relevant output from these experiments, including definitions of

components, experimental setup, and results. The ability to read in files containing

real-time PCR data allows a quick and error-free integration of measurements.

CHAPTER 1. INTRODUCTION 2

The analysis of real-time PCR data has always been a complex task since each soft-

ware tool runs as a separate application. Giving the user the possibility to submit

the generated data to a number of different analyzers from one centralized systems

greatly facilitates work with real-time PCR.

This thesis has been subdivided into six1 chapters and three appendices. Two chap-

ters provide information about the biological and programming background. Four

chapters are about the developed application describing design, implementation,

and results.

Chapter 2 gives an overview about the biological background. It starts with

descriptions of DNA and mRNA, introduces the reader to functional geno-

mics, and finally describes the methodology of real-time PCR experiments.

Those already familiar with this subject may skip this chapter.

Chapter 3 describes the current state-of-the-art in Web-based programming.

It gives an overview of the standards used, the platform utilized, current Web

technologies, and the motivation for using Web 2.0 features.

Chapter 4 describes libraries that were developed at the »Institute for Geno-

mics and Bioinformatics—TU Graz«.

Chapter 5 provides a detailed description of the necessary requirements and

presents the developed model.

Chapter 6 presents the implementation developed here. It focuses on the inte-

gration of the parser used, the analysis process, and the graphical display of

measurements.

Chapter 7 discusses the results of the developed application and gives a short

outlook of suggestions for further improvements.

Appendix A attached is the previously compiled »User Requirements Docu-

ment«.

Appendix B shows the complete entity diagram used for developing the ap-

plication.

Appendix C provided are tasks and results of the conducted usability test.

1Not including Chapter 1 on the preceding page (›Introduction‹)

Chapter 2

Biological Background
Information

In this chapter information about the biological background of this thesis is pro-

vided. It gives insight into DNA and mRNA, describes the field of functional ge-

nomics, and explains the principle of PCR. Moreover the idea and functionality of

real-time PCR is illustrated.

2.1 DNA, mRNA

Lodish et al. describe the deoxyribonucleic acid (DNA) in [Lodish et al., 2000] as a

»storehouse, or cellular library, that contains all the information required to build

the cells and tissues of an organism«. Chemically it is a long polymer consisting

of nucleotides. There are four types of nucleotides within the DNA: adenine (A),

cytosine (C), guanine (G), and thymine (T). The DNA is usually composed of two

complementary strands, which are held together through hydrogen bonds. Each

base can only pair with one predetermined counterpart (A-T, T-A, C-G, and G-C)

which are then referred to as base-pairs. The shape of DNA is normally a double

helix, but it can also build triplex and quadruplex forms.

Genetic information is stored within the DNA and is inherited by the offspring of an

organism. A gene is considered to be a segment of the DNA sequence, which codes

the structure of proteins. Proteins can be accounted as the working molecules of a

cell that put the program of activities, encoded by genes, into practice. They are,

amongst other things, involved in cell regulation, metabolism, and hormones and

play a big part in the immune system.

CHAPTER 2. BIOLOGICAL BACKGROUND INFORMATION 4

The information flow from the DNA to a protein can be summarized as »DNA makes

mRNA makes proteins«. Messenger ribonucleic acid (mRNA) is a single strand of

nucleotides consisting of A, C, G, and uracil (U), which is the counterpart of thymine.

It is build up during transcription, which is the process whereby information, con-

tained in a section of DNA, is transferred to a newly assembled piece of mRNA.

The newly build mRNA is now an exact complementary copy of the gene sequence

stored in the DNA. These mRNAs are then transported to ribosomes which translate

them into proteins.

2.2 Functional Genomics

In 2003 the Human Genome Project finally announced the completion of their work.

Over the course of thirteen years it discovered the full human genome sequence

which consists of approximately 3 billion base pairs and 20,000 - 25,000 genes (see
[Human Genome Project, 2004]). Since about 50% of these discovered genes have

known functions, the task is now to understand these functions and the interplay

of genes with proteins [Sebastiani et al., 2003]. The goal of functional genomics is to

answer these questions by developing and applying technologies that take advan-

tage of the growing amount of sequence information [Fields et al., 1999]. The term

genomics refers to the analysis of genomes whereas functional genomics describes

the global approaches to understand the functions of genes and proteins.

Functions of genes can be determined by the activity of the corresponding protein

whereas this process of becoming active is called gene expression. Because this pro-

cedure consists of copying DNA code into mRNA molecules, the abundance of pro-

duced mRNA is a measurement for gene expression.

Functional genomics uses a number of different methods. The two most promi-

nent practices are the micro-array technology and the polymerase chain reaction (de-

scribed in Chapter 2.4 on page 8). Moreover mass spectrometry and electrophoresis

are used to find answers to questions provided in the field of functional genomics.

All these methods try to answer fundamental questions in molecular biology. By ap-

plying them, one wants to identify genes that are differentially expressed in two con-

ditions. Further they allow the study of the temporal evolution of gene expression

profiles, for example to survey the expansion of a tumor including the development

of metastases. Moreover general regulatory mechanisms of cells can be analyzed,

which can give insight into the process of adaptation to different environmental con-

dition.

The micro-array technology allows to »simultaneously measure the relative expression

level of thousands of genes within a particular cell population or tissue« [Sebastiani

et al., 2003]. Its major concepts are hybridization and reverse transcription.

CHAPTER 2. BIOLOGICAL BACKGROUND INFORMATION 5

Generally hybridization is the process of pairing two single strands of either DNA

or RNA according to their bases. Double stranded DNA separates at a characteris-

tic temperature and binds back to their counterparts when the temperature is low-

ered again. Reverse transcription is the process of producing a complementary strand

of a mRNA which has been isolated out of a cell. This reverse-transcribed copy is

called copy or complementary DNA (cDNA). Moreover double-stranded cDNA can

be again reverse-transcribed into a complementary copy called cRNA. The collec-

tion of cDNAs from cellular mRNA builds up the cDNA library of a cell. By using

hybridization it is possible to pair a cDNA with an mRNA, given that they have

complementary sequences.

By applying the micro-array technology one tries to find out what expression level

certain genes have in a particular cell. Therefore a number of molecules, which bind

to the molecules of the cell, are placed on a special prepared carrier. Generally there

are two methods realizing the binding procedure between the cell molecule, called

target, and the tethered sequences, called probes:

� By hybridizing a labeled cDNA, which represents the cellular mRNA, to cDNA

sequences

� By hybridizing a labeled cRNA to short specific segments, called synthetic oli-

gonucleotides, that are also referred to as oligos

In both cases the targets are labeled with fluorescent1 dyes and the abundance of ac-

tive mRNA is measured by the emission intensity of the fluorescent dye signal. The

outcome of this analyzing process is a digital image which is produced by a scanning

laser device. This image has to be processed by specialized programs that translate

the intensity of each hybridization signal into a table with numerical measures. Af-

ter applying numerous bio-informatic algorithms, that, e. g. remove the background

noise, the data is ready to be analyzed.

2.3 Polymerase Chain Reaction

The polymerase chain reaction (PCR) is a rapid, inexpensive, and simple molecular

biology technique for replicating specific DNA fragments of small amount [Elrich,

1989]. It is done without using a living organism and amplifies DNA molecules in

an exponential manner. PCR is commonly used in medical and biological research

1Fluorescence is a luminescence (light that is not generated by high temperatures alone) in which
the molecular absorption of a photon triggers the emission of a lower-energy photon with a longer wave-
length. The energy difference between the absorbed and emitted photons ends up as molecular vibrations
or heat, which is visible as light.

CHAPTER 2. BIOLOGICAL BACKGROUND INFORMATION 6

laboratories for a variety of tasks, such as the detection of hereditary diseases, the

cloning of genes, paternity testing, and DNA computing.

Basic components that are used during a PCR are:

DNA template This can be either a DNA or a cDNA molecule containing the

region of the fragment to be amplified.

Primers Primers are short, artificial DNA strands that determine the DNA

fragment that should be amplified. Usually they are not longer than 50 base

pairs and its nucleotide sequence is complementary to the beginning and end-

ing of the DNA fragment to be amplified. During the PCR they bind to the

DNA template and act as starting points for the DNA polymerase, which syn-

thesise the new DNA strand. The determination of a primer’s length is cru-

cial for the design of a PCR experiment. Primers that are too short may bind

to several positions resulting in non-specific copies. On the other hand the

length of primers is limited by the temperature required to melt it (defined

as the temperature at which half of the primer binding sites are occupied),

which is proportional to the length of the primer. All these considerations

make primer design an important part of a PCR experiment which is sup-

ported by various computer programs (see [Abd-Elsalam, 2003]).

DNA polymerase A DNA polymerase is a protein that binds to a single DNA

strand and creates the missing complementary strand of the template. Un-

fortunately, during the PCR process human DNA polymerase is destroyed

when it is heated over 65◦C. The Taq polymerase, named after the hot-spring

bacterium Thermus aquaticus, lives in geysers at a temperature of over 110◦C.

Therefore it can survive temperatures over 90◦C which makes it an ideal poly-

merase for PCR experiments. However it has a relative high error rate (1 in

10,000 bases) which can not be corrected due to the lack of a correction mech-

anism.

dNTPs Deoxynucleotides-triphosphates (dNTPs) are used by the DNA poly-

merase to assemble the new strand. There are four types of dNTPs (dATP,

dCTP, dGTP, dTTP), one for every nucleotide occurring in the DNA strand.

A PCR normally exists of three steps, forming a cycle, that are repeated between

twenty to thirty-five times. The steps in each cycle are:

Denaturation This step is usually performed at 95◦C about 1-2 minutes. Due

to the high temperature the double-stranded DNA melts apart into two single

strands allowing the added primers to bind to them. To ensure that both the

template DNA and the primers are completely separated and single strand

only, a long denaturation step is often performed right before the initial cycle.

CHAPTER 2. BIOLOGICAL BACKGROUND INFORMATION 7

Annealing After denaturation the mixture is cooled down to 45-60◦C and stays

at this temperature for 1-2 minutes. This allows the added primers to bind to

the complementary regions of the template DNA. The temperature depends

on the primers and is normally 5◦C below the melting temperature of the

primers.

Elongation The last step, also called extension, is carried out at 72◦C for about

1-2 minutes given that the Taq polymerase has been used. The chosen time

is dependent on the used DNA polymerase whereas the temperature is based

on the length of the DNA fragment to be amplified. During this step the DNA

polymerase binds to the template DNA, where the primers are attached, and

builds a complementary strand. It extends the primers by adding nucleotides

in the order in which they can pair. By extending the final elongation step one

can ensure that any remaining single stranded DNA is completely copied.

Figure 2.1 displays the steps performed during a normal PCR cycle.

Figure 2.1: The three steps that are normally performed during each cycle are shown. First
the DNA is denatured which enables primers to bind to the single strands during the annealing
step. Now the DNA polymerase can extend the missing second strand and the cycle starts
again. This figure was taken from [Florida Museum of Natural History, 2006].

PCR experiments are carried out in a machine called thermocycler. These machines

can carry plates consisting over 300 wells each containing a separate reaction, which

greatly increases the number of reactions that can be done simultaneously. Its ma-

jor function is the up and down regulation of the temperature which is needed to

perform a PCR.

CHAPTER 2. BIOLOGICAL BACKGROUND INFORMATION 8

Being one of the most frequently performed experiments in today’s laboratories PCR

is part of many modern analysis processes.

� Genetic fingerprinting is a technique used to identify a person by comparing

his or her DNA with a given sample. It is applied for, i. e., forensic purposes

and paternity testing.

� Cloning genes describes the process of isolating a gene from one organism

and then inserting it into another organism. PCR is used to amplify the gene

which can then be inserted into the other organism, where it is easier to study

its functionality.

� The comparison of gene expression is used to estimate changes in the amount

of a gene’s expression of, e. g. differently treated organisms.

Although PCR is a very robust laboratory technique it has some problems and limi-

tations.

Non specific priming As already mentioned, the design of the appropriate

primers is crucial to the success of a PCR experiment. Primers may bind to

positions where they are not supposed to, leading to unwanted sequence am-

plifications. The non specific binding of primers can be decreased by choosing

the proper annealing temperature although it can never be completely extin-

guished.

Size limitation Using PCR it is possible to amplify DNA sequences up to three

thousand base pairs. Longer sequences causes the DNA polymerase to fall of

due to its limited life time.

2.4 Real-time PCR

Wong and Medrano state in [Wong and Medrano, 2005] that »real-time PCR has be-

come one of the most widely used methods of gene quantitation because it has a

large dynamic range, boasts tremendous sensitivity, can be highly sequence-specific,

has little to no post-amplification processing, and is amenable to increasing sample

throughput«. It is a technique that collects data during the PCR process using differ-

ent fluorescent chemistries and therefore puts together detection and amplification

in one single step. Because real-time PCR is used to quantitate templates it is also

referred to as quantitative PCR (qPCR) or quantitative real-time PCR (qRT-PCR).

Real-time reverse transcription PCR (real-time RT-PCR) is a variety of real-time PCR

where RNA instead of DNA is used as template.

CHAPTER 2. BIOLOGICAL BACKGROUND INFORMATION 9

Data that is generated during the PCR can be used to determine the point at which

fluorescence intensity is greater than the background fluorescence signal. This point,

commonly referred to as Ct or crossing point (CP), gives information about the ini-

tial quantity of target DNA in the starting material and is inverse proportional to the

used amount. The possibility to measure data right as it occurs allows the determi-

nation of the initial quantum without the need for post-amplification manipulation.

Combined with the dynamic range of 7 to 8 log orders of magnitude real-time PCR

has revolutionized the field of measuring gene expression. Drawbacks are the re-

quirement for expensive equipment and reagents and the appliance of normalization

techniques to achieve accurate results.

A typical PCR has four major phases. It starts with a linear ground phase at which the

fluorescence emission is below the background. The early exponential phase describes

the stage of a PCR where the fluorescence emission is significantly higher than the

background. The corresponding cycle, determined through a set threshold, is the

Ct or CP value and is used to calculate experimental results. In the upcoming log-

linear or exponential phase the PCR product doubles in each cycle, provided that ideal

reaction conditions are available. Finally the plateau phase signals the stage at which

reaction components become limited and the fluorescence intensity is for no further

need.

Real-time PCR can either be performed as a two-step reaction, where the reverse

transcription of RNA happens in one tube and the actual PCR amplification occurs

in another tube, or as a one-step reaction combining these two steps into one single

tube. Two-step real-time PCRs ensure that always the same template amount is used

when different PCR assays are performed on dilutions of a single cDNA. However

there are increased opportunities of DNA contamination using this type of protocol.

One-step real-time PCRs are described as less sensitive than two-step protocols but

they minimize experimental variation, because all enzymatic reactions occur in a

single tube.

Generally there exist two types of real-time quantitation.

Absolute Quantitation The aim of absolute quantitation is the determination

of concentrations using a standard curve, which provides a linear relationship

between Ct value and initial amount of total DNA. This curve is calculated

by serially diluted standards of known concentrations and enables the deter-

mination of the concentration of unknown samples. However this method

requires that all standards and samples have approximately equal amplifica-

tion efficiencies to produce accurate results.

Relative Quantitation It uses either an external standard or a reference sam-

ple, called calibrator, to measure the changes between samples, whereas re-

sults using a calibrator are expressed as target/reference ratio.

CHAPTER 2. BIOLOGICAL BACKGROUND INFORMATION 10

In contrast to relative quantitation, absolute quantitation allows the comparison of

multiple plates or runs. Ct values from relative quantitation are only accurate when

compared within one PCR. Unfortunately absolute quantitation is considered to be

more labor-intensive, because of the need for reliable standards.

Due to the diminution of PCR components and the reduction of DNA polymerase

activity during a PCR, amplification efficiencies are not ideal and calculations may

therefore overestimate the starting concentration. The amplification efficiency of the

reaction varies from being relatively stable in the early exponential phase and grad-

ually declining to zero. Consequently it is important to calculate the efficiency of a

PCR experiment which is most accurate when the analysis is based on raw data.

Material acquired from different individuals usually varies in tissue mass or cell

number, experimental treatment, or RNA quantity. Normalization tries to correct

these sample-to-sample variations of gene expression data. This is done by using a

control gene that should have the same expression regardless of the sample’s origin

or treatment. One example of controls are housekeeping genes, which have stable

expressions and have been employed as controls in gene expression assays. Using

multiple housekeeping genes and calculating a normalization factor from the ge-

ometric mean of their expression can improve the quality of normalization and is

considered as the most accurate method [Wong and Medrano, 2005].

Major vendors of real-time PCR systems are:

� Applied Biosystems Products: ABI PRISM 7000, 7700 Sequence Detection Sys-

tem; 7900HT Fast Real-Time PCR System.

� Roche Products: LightCycler 480 Real-Time PCR System, LightCycler 2.0 Sys-

tem

� Bio-Rad Products: MyiQ Single-Color Real-Time PCR Detection System, iCy-

cler Thermal Cycler

Chapter 3

Software Development
Technologies

This chapter gives insight into the various standards defined by the Object Manage-

ment Group. The Java 2 Platform, Enterprise Edition and its sundry components are

described. Some established and brand new Web technologies are specified, which

are followed by a detailed description of code generation methods. Finally, used

development tools and the JFreechart library are discussed.

3.1 Standards

All standards presented in this section have been published by the Object Manage-

ment Group (OMG). It is an »open membership, not-for-profit consortium that pro-

duces and maintains computer industry specifications for interoperable enterprise

applications« [Object Management Group, 2006]. Their membership includes nearly

all of the large companies in the computer industry and any company may partici-

pate in the OMG standards-setting process.

3.1.1 Model Driven Architecture

In 2001 the OMG released their first version of the Model Driven Architecture (MDA)

framework. Designed as an approach for using models in software development its

three main goals are interoperability, reusability, and portability which are achieved

CHAPTER 3. SOFTWARE DEVELOPMENT TECHNOLOGIES 12

by separating the business and application logic from the underlying platform [Miller

and Mukerji, 2003].

MDA is based on the following OMG standards: the Unified Modeling Language,

the Common Warehouse Metamodel, the Meta-Object Facility, and the XML Meta-

data Interchange. A Platform Independent Model (PIM) which has been generated

by using these standards can be realized through the MDA on any platform.

MDA stages procedures and tools for:

� defining a platform independent system

� defining platforms

� picking a particular platform for the system

� transforming the system specifications into one for a particular platform

3.1.2 Unified Modeling Language

The Unified Modeling Language (UML) is used to specify, document, and visualize

models of software systems. The design of a good model has always been an impor-

tant part of software development. It lets one work at a higher level of abstraction,

it helps concentrating on end-user needs and provides a big picture of the software

all before a single line of code has been written [Object Management Group, 2005].

Currently UML 2.0 defines thirteen types of diagrams that are divided into three

categories:

Structure Diagrams are used to model the static structure of the system. They

focus on elements of a system and the relationships between them. Impor-

tant diagrams are the Class Diagram, the Component Diagram, the Package

Diagram, and the Deployment Diagram

Behavior Diagrams describe behavioral features of a system or business pro-

cess. This includes Activity, State Machine, and Use Case Diagrams.

Interaction Diagrams are concentrating on object interactions and are deriva-

tives of Behavior Diagrams. Essential diagrams are the Sequence Diagram,

the Communication Diagram, and the Timing Diagram.

CHAPTER 3. SOFTWARE DEVELOPMENT TECHNOLOGIES 13

3.1.3 XML Metadata Interchange Format

The Object Management Group in [Object Management Group, 2006] defines the

XML Metadata Interchange Format (XMI) as follows:

XMI is a model driven XML Integration framework for defining, in-

terchanging, manipulating, and integrating XML data and objects. XMI-

based standards are in use for integrating tools, repositories, applica-

tions, and data warehouses. XMI provides rules by which a schema can

be generated for any valid XMI-transmissible MOF-based metamodel.

Meta-Object Facility (MOF) is an extensible model-driven integration framework for

defining, manipulating, and integrating metadata and data in a platform-independ-

ent manner. Its standards are used for integrating tools, applications, and data.

The original intention of XMI was to enable an easy interchange between UML-based

modeling tools. However it can also be applied to software and databases. Cur-

rently two different XMI versions are available whereas there is one main difference

between them: Version 1.2 uses DTDs whereas Version 2.0 uses XML Schemas to

validate the XML document.

3.2 Java 2 Enterprise Edition

The Java 2 Platform, Enterprise Edition (J2EE) technology provides a component-

based approach to the design, development, assembly, and deployment of enter-

prise applications [Bodoff et al., 2001]. It uses a muti-tiered distributed application

model, meaning that application logic is divided into components according to its

function. These components can be installed on different machines corresponding

to their J2EE tier they belong to.

The J2EE defines four different components:

� Client tier components running on the client machine

� Web tier components running on the J2EE server

� Business tier components running on the J2EE server

� Enterprise information system (EIS) tier software running on the EIS server

CHAPTER 3. SOFTWARE DEVELOPMENT TECHNOLOGIES 14

Although four different tiers are defined, J2EE applications are generally referred to

as three-tiered, because they are usually distributed over three locations. A com-

ponent can only be executed if it has been assembled into a J2EE module and de-

ployed into its container. Containers are the gateways between a component and

the platform-specific functionality that supports the component. Important contain-

ers are:

� Enterprise JavaBeans container It administers enterprise beans and runs on

the J2EE server.

� Web container Running on the J2EE server it manages the execution of Java-

Server Pages sites and servlet components.

� Application client container It handles the execution of application client com-

ponents and runs on the client.

A J2EE module is an assembly of one or more components including their related

files and an XML based deployment descriptor that specifies how to assemble and

deploy the unit.

3.2.1 Client Tier

The J2EE platform supports many types of clients whereas the coarsest differen-

tiation is between Web-based and non-Web-based clients [Kassem and the Enter-

prise Team, 2000]. Web-based J2EE applications use Web browsers to download

Web pages and applets to the client machine. Web sites can either be static or dy-

namic Hypertext Markup Language (HTML), Wireless Markup Language (WML) or

Extensible Markup Language (XML). In contrast to Web-based clients, application

clients run on a client machine and typically have a graphical user interface created

from Swing or Abstract Window Toolkit (AWT) Application programming interfaces

(API)s. They directly access enterprise beans running in the business tier [Bodoff et

al., 2001].

3.2.2 Web Tier

In a J2EE application the Web tier is mainly responsible for creating (dynamic) con-

tent. It processes HyperText Transfer Protocol (HTTP) GET and POST requests and

translates them into business logic language. Using the results from the business tier

it typically creates HTML or XML content and sends it back to the client. Moreover it

manages interactions between clients and application business logic and determines

which page is displayed next. Web components are either servlets or JSP sites or a

combination of both technologies.

CHAPTER 3. SOFTWARE DEVELOPMENT TECHNOLOGIES 15

3.2.2.1 Servlet

Initially Java servlets were designed to gratify the need for dynamic Web content.

They are written in the Java programming language and extend the functionality of

a Web server. Hosted in a Web container they are accessed via the request-response

programming model. Servlets are platform independent and can output any content

type, usually HTML or XML.

3.2.2.2 JSP

A JavaServer Pages (JSP) site is a textural document that describes how to create a

response object from a request object for a given protocol [Roth and Pelegri-Llopart,

2003]. It services requests as a servlet which is generated and compiled whenever a

request is mapped to a new JSP page.

Generally a JSP page consists of elements and template data. Elements are processed

by the JSP container, whereas template data is everything not known to the JSP trans-

lator.

Features of JavaServer Pages are:

Directives Directives are messages for the JSP container that influence the

translation of a JSP page into the servlet. They do not produce any output

but define which additional page should be imported, which tag libraries are

used and what is included into the JSP page.

Standard Actions A certain tag with the prefix jsp is used to define standard

actions. They allow one to perform certain tasks like instantiating objects or

accessing JavaBeans without having to write Java code.

Scripting Elements They are used to create and access objects and to per-

form computations that affect the content generated. There are three classes

of scripting elements: declarations, scriptlets and expressions. Declarations are

used to declare variables and methods in the scripting language that are avail-

able to all other scripting elements. Scriptlets contain an arbitrary code frag-

ment, and an expression element consists of a scripting language expression

that is evaluated and commonly converted into a string.

Tag Extension mechanism A tag file is a source file that abstracts a segment of

JSP code and makes it reusable via a custom action. Tag Libraries are collec-

tions of tag files that encapsulate functionality to be used from within a JSP

page. The tag extension mechanism allows users to add custom tags that can

be used in any further JSP page.

CHAPTER 3. SOFTWARE DEVELOPMENT TECHNOLOGIES 16

Template content It is directly transformed into code and typically uses HTML

or XML elements. Template data does not affect the dynamic content and is

often used to design the layout of the Web page.

3.2.3 Business Tier

The business tier is, in a multi-tier J2EE application, also referred to as the Enterprise

JavaBeans (EJB) tier. It is responsible for managing business logic, transactions, con-

currency control, and security.

3.2.3.1 Enterprise JavaBeans

An enterprise bean is a server-side component that runs in the EJB container and

encapsulates the business logic of an application. Its important role lies in the linkage

between the enterprise information system and the client tier, whereas the client

always communicates via the exposed component interface [Roman et al., 2002].

There are three different kinds of enterprise beans:

Session beans are used to model business processes or task-flows. Their life-

time is generally equivalent to the length of the client’s session and they are

non-persistent. Each session bean keeps conversations with a client which are

composed of a number of method calls between the client and the bean.

Based on the type of conversation one can differ two subtypes of session

beans. Stateful session beans keep their conversational state on behalf of an

individual client and are therefore designed to serve business processes that

span multiple method requests or transactions. Stateless session beans keep

their conversational state only for a single method call and can therefore serve

more than one client.

Entity beans are persistent objects that know how to persist themselves per-

manently to a durable storage. They store data as fields and have methods

associated to access and manipulate these fields.

Message driven beans are special EJB components that can receive Java Mes-

sage Service (JMS) messages and cannot be directly accessed by a client. JMS

is a Java Message Orientated Middleware API for sending and receiving mes-

sages between two or more clients. The messages are processed asynchro-

nously and have no return value.

CHAPTER 3. SOFTWARE DEVELOPMENT TECHNOLOGIES 17

3.2.4 Enterprise Information System Tier

The enterprise information system (EIS) tier covers enterprise infrastructure sys-

tems, namely, mainframe transaction processing, database systems and other legacy

information systems. Moreover it deals with enterprise information software.

3.2.5 J2EE Patterns

A Design Pattern is a general solution to a commonly-occurring problem. The J2EE

Patterns provide a collection of tested and proven answers for J2EE-based problems.

Amongst others, Alur et al. specify in [Alur et al., 2001] the following patterns:

Business Delegator hides the underlying implementation details of the busi-

ness service which reduces the coupling between presentation-tier clients and

the system’s business service. It uses a component called Lookup Service

which locates the actual business services.

Session Facade manages and abstracts the underlying business objects and

provides a service layer that exposes only the required interfaces. Thus the

whole functionality of an application is accessible through one bean.

Service Locator provides a single point of control to centralize service object

look-ups. This reduces client’s complexity, improves performance by provid-

ing a caching facility, and abates redundant lookups, because the same client

or other clients can reuse the Service Locator.

Transfer Objects (also referred to as Value Objects) are used to assemble re-

lated attributes. By transporting Transfer Objects instead of single attributes

from an enterprise bean to its client, the number of remote calls and its asso-

ciated overhead is reduced.

Value List Handler is used to control a search for certain data, caches the re-

sults, and provides the results to the client in a result set. The client can access

the result set through an offered iterator and obtains Transfer Objects from

the cached list.

Data Access Objects (DAO) abstract and encapsulate all access to the data

source and manage the connection with the data source to obtain and store

data. In combination with the Abstract Factory pattern, described by Gamma

et al. in [Gamma et al., 1995], only an abstract DAO factory object is provided

that can construct various types of concrete DAO factories. This allows to

change underlying data access mechanisms, because each factory supports a

different type of persistence storage implementation.

CHAPTER 3. SOFTWARE DEVELOPMENT TECHNOLOGIES 18

3.3 Web Technologies

Todays Web applications have reached a level of complexity that makes it impossible

to create them without a solid design and a good knowledge of current technologies.

Frameworks provided by various organizations try to help and guide developers

building a reliable, easy to maintain, and up-to-date Web application. Almost every

year a new technology is invented that revolutionizes the Internet and comes up

with a new way of using the World Wide Web.

The preceding section describes one of the most used Web application frameworks

and will give insight into the newest and currently most discussed Web technology—

Ajax. Traditional Web applications, also referred to as Web 1.0, have a very distinct

request-response model that greatly differs from rich desktop applications. Web 2.0

tries to dispense the visible back and forth and introduces things, like drag-and-

drop, zooming, and on-the-fly evaluation that have only been known from stan-

dalone programs. Furthermore a Java library that improves Ajax will be explained.

3.3.1 Struts

The Struts framework implements the popular Model 2 Architecture framework

which provides a unified infrastructure upon which Internet applications can be

based. Generally there exist two approaches for building Web applications using

JSP technology called JSP Model 1 and Model 2 architectures.

The first one lets the JSP page handle all of the processing of the request and uses

it for displaying the output to the client. In contrast the second approach tries to

use the JSP page only for displaying the content by including servlets that handle

requests and perform front-end processing. By using the Model 2 architecture a clear

separation of the business logic, presentation, and request processing is given which

is often referred to as a Model-View-Controller (MVC) pattern [Cavaness, 2002].

The Model represents data objects that are manipulated and presented to the user.

Serving as the screen representation of the Model, the View presents the current state

of data objects. The Controller defines the way the user interface reacts to the user’s

input and is the component that manipulates the Model. Figure 3.1 on the next page

shows a common illustration of the MVC paradigm. The View sends user actions to

the Controller which determines the next View or informs the Model that the state

has changed. The Model processes queries from the View and sends notifications to

the View that the state has changed.

CHAPTER 3. SOFTWARE DEVELOPMENT TECHNOLOGIES 19

Figure 3.1: Shows a common illustration of the MVC paradigm. The Controller manages user
actions sent by the View, informs the Model of a state change, and determines the next View.
Queries sent by the View are processed by the Model which informs the View about state
changes. This figure was taken from [Husted et al., 2003].

3.3.1.1 The Controller

Struts uses a Java servlet to act as a controller that receives input from the client,

invokes business operations, and coordinates the views returned to the client. It

extends the ActionServlet and processes and delegates requests to Struts Ac-

tion classes according to the specified mapping. The Action class perform functions,

such as authorization, logging, and invoking business methods and sends back the

response to the client.

3.3.1.2 The View

The presentation of data is done by a combination of HTML sites, JSPs, custom tag

libraries, and ActionForm objects. JSPs make up the majority of View components

and are used to present data with the help of custom tag libraries. Included in the

framework are the Bean, HTML, Nested, Logic, and Tiles tag libraries [Struts, 2006].

ActionForm objects are used to pass client data back and forth between the user and

the business layer.

CHAPTER 3. SOFTWARE DEVELOPMENT TECHNOLOGIES 20

3.3.1.3 The Model

In a multi-tier application the Model view is normally covered by EJBs. Due to the

fact that the Struts framework does not provide any specialized model components,

JavaBeans—commonly referred to as data transfer object or value objects—are re-

turned from session beans and used within the Web tier.

3.3.1.4 Features

The Struts framework provides many features that help building up state-of-the art

Web applications. Three very important parts are:

Tag Libraries Struts takes advantage of the JSP tag library function and deliv-

ers a set of optimized tag libraries. Using the bean and nested library allows

one to access JavaBeans. The html library works closely with ActionForms

and renders HTML tags. Conditional output generation, looping, and appli-

cation flow management can be realized with the logic tag library.

Validation User input can be validated by a defined method in the various

ActionForms. A better way is to move it out into an XML file that can be

modified independently of the code. This technique is realized by the Struts

Validator framework. Moreover it provides many standard routines that can

be easily extended.

Internationalization Cavaness defines in [Cavaness, 2002] internationaliza-

tion as »the process of designing your software ahead of time to support

multiple languages and regions, so that you don’t have to go back and re-

engineer your applications every time a new language or country needs to be

supported.« Struts determines the preferred locale and uses it to look up text

and resources from resource bundles. They are ordinary text files and can be

accessed both in JSPs and Java code.

3.3.2 Ajax

Ajax stands for »Asynchronous JavaScript and XML« and describes a Web develop-

ment technique that tries to eliminate major disadvantages of common Web applica-

tions in comparison with desktop programs [Telerik Corporation, 2005].

Major drawbacks of common Web applications are:

CHAPTER 3. SOFTWARE DEVELOPMENT TECHNOLOGIES 21

Poor Interactivity After each interaction with the server the user has to wait

until the page has been reloaded.

Inefficiency Sending the complete form data from the browser to the server

and receiving the full HTML markup of the page is in most cases highly inef-

ficient, since only a small part of the interface is actually changing.

Low Usability Having to reload always the complete page when only minor

changes have been made may confuse the user.

Simplistic Interfaces Because of the stateless HTML protocol and the need to

transfer the complete page to the server Web applications tend to have very je-

june graphical interfaces. Complex user interactions and on-demand updates

are not realizable which are a trademark of common desktop applications.

Ajax tries to improve all these weaknesses by trying to make the communication

with the server asynchronous, meaning that data is transfered and processed in the

background. It uses a JavaScript engine that is loaded on the client during the ini-

tial page load and works as a middleman sending only relevant data to client and

server [Zammetti, 2005]. Data is sent in form of XML using the XMLHttpRequest
component which is a JavaScript object. Microsoft’s Internet Explorer uses an Ac-

tiveX object to create the XMLHttpRequest component whereas other browsers can

directly instantiate it [McLaughlin, 2006]. The upcoming Internet Explorer 7 is sup-

posed to natively support the XMLHttpRequest object.

Moreover this engine is also responsible for rendering the interface the users sees

and handles things that do not involve the server, such as simple data validation or

small navigation tasks.

Figure 3.2 on the following page shows a diagram which displays a complete life-

cycle of an Ajax Web form. An initial HTTP request is sent by the client to the

server. The servers transmits back the HTML response and initiates the start of

the JavaScript Ajax engine on the client. If the client needs data from the server

it uses JavaScript calls that are processed by the Ajax engine which uses the XML-
HttpRequest object to communicate with the server. This conversation is done

asynchronously in the background and as soon as the Ajax engine receives an an-

swer it uses JavaScript to manipulate the Web page.

Advantages of Ajax are:

Interactivity Tasks like updating or deleting records, expanding Web forms,

or returning simple search queries are mostly executed on the client without

the need of reloading the full page. This means that the user does not have

CHAPTER 3. SOFTWARE DEVELOPMENT TECHNOLOGIES 22

Figure 3.2: Displayed is a complete life-cycle of an Ajax-enabled Web form. The client
sends an HTTP request to the server (1) which is responded and inducts the start of the
JavaScript Ajax engine (2). Further requests are managed by the Ajax engine which pro-
cesses JavaScript calls (3), communicates with the server using the XMLHttpRequest object
(4), and updates the page (6) using XML data received from the server (5). This figure was
taken from [Telerik Corporation, 2005].

to stare at a blank screen waiting for a response which dramatically increases

usability.

Efficiency Only small request and responses are sent between the client and

the server which permits the development of more interactive applications.

Portability Due to the fact that Ajax uses only features that are established and

well-documented it runs in all major browsers.

Problems that arise when using Ajax:

JavaScript Developing a Web application which uses Ajax requires excessive

use of JavaScript that has the drawbacks of a scripting language and is very

difficult to debug.

CHAPTER 3. SOFTWARE DEVELOPMENT TECHNOLOGIES 23

Breaking the Page Paradigm By using Ajax a Web page no longer holds con-

stant data which brings up two important problems: Neither the back button

nor book marking will work any longer. Since most users are very conversant

with both techniques, developers have to think of different mechanisms for

overcoming these two issues.

Feedback notification Without the usual occurrence of a blank screen between

user interactions it is important to find other ways to inform the user that

something is going to change. Otherwise users will get confused and are

likely to handle the software in a way it was not intended to be.

Browser that currently support Ajax:

� Microsoft Internet Explorer version 5.0 and above

� Gecko-based browsers like Mozilla, Firefox, Camino, Netscape

� KHTML API based browsers like Konqueror version 3.2 and above, Apple Sa-

fari version 1.2 and above

� Opera version 8.0 and above

3.3.3 Direct Web Remoting

DWR, standing for »Direct Web Remoting«, is a Java open source library which

greatly improves programming of Ajax Web sites allowing to use Java functions on

a Web server directly in a Web page [Getahead, 2005].

It consists of two main parts:

Java Servlet running on a server to process requests and sending back re-

sponses.

JavaScript used to send requests to the Servlet and for dynamically updating

the Web page.

The core idea behind Direct Web Remoting is to dynamically generate JavaScript that

is based on real Java classes. A so called »eventHandler«, representing an AjaxSer-

vice, is created which matches server-side code. It is used to handle all the converting

of parameters and return values between Java and JavaScript.

CHAPTER 3. SOFTWARE DEVELOPMENT TECHNOLOGIES 24

By Using DWR a Web application developer is not limited to the functionality Java-

Script provides, but can take full advantage of the Java programming language. This

includes complex calculations, calling of business methods, generating content, and

the usage of the Java Exception handling mechanism. Instead of having to write

complex mapping interfaces and algorithms, all these methods can be accessed using

the JavaScript object that is created by DWR.

Furthermore DWR can be used in combination with a Java servlet and provides sup-

port for Struts Actions.

Figure 3.3 shows how DWR is used to dynamically alter the content of a selection

list. First it listens to a JavaScript event like onchange, which calls a function of

the JavaScript object provided by DWR. This function is executed on the server and

sends back the altered list as an XML object. DWR processes this object and makes it

available for JavaScript which uses it to change the selection list. All these activities

are done asynchronously in the background and do not require a page reload.

Figure 3.3: This diagram shows how DWR can alter the content of a selection list as a result
of some JavaScript event. This event calls a function provided by DWR which is a mapping of
the actual Java function on the server. DWR wraps the request, sends it to the server where it
is executed, and processes the response object. Another JavaScript function is used to alter
the Web page according to the received data. This figure was taken from [Getahead, 2005].

3.4 Code Generation

Writing and maintaining large business software systems has always been a very

labour-intensive and error prone job and includes highly repetitive and monotonous

CHAPTER 3. SOFTWARE DEVELOPMENT TECHNOLOGIES 25

tasks. The automation of software production using a code generator speeds up

software development, improves quality, and reduces maintenance efforts.

Generally there are two types of code generators. A closed generator offers a fixed

and optimized solution that can not be modified or adopted. On the contrary an open

generator has no limitations in the generated code, but provides only basic function-

ality that often has to be adopted and extended by the user.

A UML based code generator reads a UML model and generates platform specific

code out of it. An example of a UML based code generator is AndroMDA.

3.4.1 AndroMDA

AndroMDA is an open source code generation framework based on the MDA par-

adigm. By taking one or many models (normally UML models stored in XMI) in

combination with AndroMDA plug-ins, the user is able to produce any kind of cus-

tom component. The framework is not limited to a number of specific programming

languages, because by writing or customizing plug-ins it can produce any file in any

language needed [AndroMDA, 2005b].

Currently AndroMDA is mostly used by developers working with J2EE technolo-

gies. It is able to generate code for Hibernate, EJB, Spring, Web Services, and Struts

and can setup a new J2EE project from scratch, given that a UML model exists. An-

droMDA is started using Maven or Ant, although it is recommended to use Maven,

because most tools come with a Maven plug-in. Apache Ant is a build tool that

uses Java classes and XML-based configuration files. It calls out a target tree, where

sundry tasks get executed [Apache Software Foundation, 2006a]. The Apache Soft-

ware Foundation defines in [Apache Software Foundation, 2006b] Maven as »a soft-

ware project management and comprehensive tool«. It can manage build processes,

reporting, and documentation from a central piece of information.

Figure 3.4 on the following page displays how Ant generates a project using An-

droMDA and XDoclet (see Chapter 3.4.2 on page 28).

CHAPTER 3. SOFTWARE DEVELOPMENT TECHNOLOGIES 26

Figure 3.4: Presented is a flowchart of a build process using Ant, AndroMDA, and XDoclet.
First AndroMDA reads in the UML model and the cartridge definitions. Next it processes the
model and generates on the one hand source code that does not need manual adaptation and
on the other hand source code that needs to be modified. Now XDoclet generates interfaces
and deployment descriptors out of the generated code. Finally Ant builds the source files and
creates a component. This figure was taken from [Truskaller, 2003].

Major advantages of AndroMDA are:

� The project model does reflect the implemented code.

� It is community driven guaranteeing that there will always be fast and free

support.

� It is open source and modular which helps adapting it to new projects.

The actual code generation process starts with mapping the Mental-Model (MM) to

a Platform Independent Model (PIM) using a more formal language such as UML.

CHAPTER 3. SOFTWARE DEVELOPMENT TECHNOLOGIES 27

This PIM is not bound to any existing platform, can be re-modeled at any time, and

is a good way to communicate ideas to others. Next this model is transformed into a

Platform Specific Model (PSM) by using plug-ins called cartridges which control the

generation of each file.

3.4.1.1 Cartridges

Cartridges are used to specify how the UML model should be translated into actual

code. It processes specified stereotypes (i. e., Entity, Enumeration, etc.) or model

elements that meet certain conditions (i. e., dependency to a Service) [AndroMDA,

2005a].

Currently AndroMDA delivers ten different cartridges which, amongst others, are

used for EJBs, Hibernate, Struts, and Spring. Technically a cartridge in AndroMDA

is a jar file, zip file, or a directory. It contains Velocity templates, see Chapter 3.4.1.2

(›Velocity Templates‹), Java classes, and a special descriptor file named andromda-
cartridge.xml.

By applying them to ones project they automatically create session beans, message

driven beans, entity beans, value objects, and rudimentary Web pages including all

necessary Struts Java classes and configuration files.

One of the advantages of AndroMDA is that the user can remodel the PIM at any

time and the underlying code is changed automatically. However this creates the

problem that manually altered code is lost whenever a new build is executed. The

cartridges used in this project address this issue by dividing code into two separate

folders.

Manual Folder It holds all files that may be modified by the user, like JSP

pages, Struts files, derivatives of session beans, and many more.

Generated Folder This folder keeps files of value objects, entity beans, etc.

and is completely deleted and rebuilt whenever AndroMDA is executed.

3.4.1.2 Velocity Templates

Velocity is a Java-based template engine. It permits anyone to use a simple yet pow-

erful template language to reference objects defined in Java code [Velocity, 2005b].

It is commonly used in various fields [Velocity, 2005a]:

CHAPTER 3. SOFTWARE DEVELOPMENT TECHNOLOGIES 28

� Web applications

� Source code generation

� Automatic emails

� XML transformation

AndroMDA uses Velocity templates for the code generation process. In the andro-
mda-cartridge.xml the mapping from stereotype to Velocity template is defined.

The template takes an instantiated model and outputs the previously defined con-

tent.

3.4.2 XDoclet

XDoclet is an open source code generation engine that enables Attribute-Oriented

Programming for Java, meaning that special JavaDoc tags can be added to one’s

code. These source files are parsed by XDoclet that generates elements like XML

descriptors and/or source code files according to the specified JavaDoc tag.

Originally XDoclet was intended to be a tool for generating EJBs, but it developed

into a general-purpose code generation engine. Currently it can only be used as

part of the Ant build process. It ships with a set of modules that, e. g. generate,

based on a EJB implementation source file, interfaces, value objects, Struts Forms,

and deployment descriptors [XDoclet, 2005].

XDoclet consists of five components:

XDoclet Engine provides a template engine that transforms a template into a

file. It uses a Jarkata Ant task to invoke the templates and a loader to discover

and plug in modules.

XJavaDoc Engine is a rewrite of Sun’s JavaDoc engine that works five times

faster and suits better to XDoclet purposes. It scans the source code and uses

an API to extract information from tags.

Subtasks are classes that tell the XDoclet engine what template to invoke and

how it should be called.

Templates consist of static and dynamic parts. Static parts are directly ren-

dered whereas dynamic parts are substituted by content provided by tag han-

dlers.

CHAPTER 3. SOFTWARE DEVELOPMENT TECHNOLOGIES 29

Tag Handlers are sub classes of xdoclet.TagHandler and are invoked by

the template engine. A tag is an XML element satisfying the following style:

<namespace>.<tag name>.

3.5 Development Tools and Libraries

The following chapter will introduce the main development tools used during the

thesis and will give a description of the powerful open-source library JFreechart.

3.5.1 JFreechart

JFreeChart is a free chart library for the Java platform and part of the JFree software

projects created by David Glibert and Thomas Morgner. Other projects are JFreeRe-

port, Pixie, JWorkbook, JFreeDesigner, and the free general purpose Java class library

JCommon used in the JFreeChart and JFreeReport projects [Gilbert, 2002].

JFreeChart is designed for use in applications, applets, servlets, and JSPs [Gilbert,

2005]. Distributed with the complete source code the following charts are available:

pie charts, bar charts, line charts, scatter plots, time series charts, Gantt charts, meter

charts, symbol charts, wind plots, combination charts, and many more. It is written

entirely in Java allowing it to run on any implementation of the Java 2 platform.

Some of the core features of JFreeChart are:

� Export to PNG and JPEG

� Tool tips

� HTML image map generation

� Annotations

� Interactive zooming

� Chart mouse events

The drawing of charts is completely managed by JFreeChart. It »achieves this by

obtaining data from a Dataset and delegating the drawing to a Plot object (which, in

turn, delegates the drawing of individual data items to a CategoryItemRenderer or

a XYItemRenderer, depending on the plot type)« [Gilbert, 2005].

CHAPTER 3. SOFTWARE DEVELOPMENT TECHNOLOGIES 30

All datasets that are used by JFreeChart are defined by interfaces which makes it

easy to implement one’s own dataset. Of course, there are several default classes

available like AbstractDataset, CombinedDataset, DefaultCategoryDataset, Default-

TableXYDataset, JDBCCategoryDataset, JDBCXYDataset, XYSeriesCollection, and

many more.

Charts and Plots created with JFreeChart can be customized in many ways:

� add/change title

� set background color/background image

� smooth charts using anti-aliasing

� change colors for series

� set axis labels

3.5.2 MagicDraw

»MagicDraw is a visual UML modeling and CASE tool with teamwork support«
[No Magic Inc., 2006]. It is a multifunctional tool that facilitates analysis and design

of Object Oriented systems and databases by providing database schema modeling,

Data Definition Language (DDL) generation, a code engineering mechanism, and

reverse engineering facilities.

Due to the fact that it is written in Java it is platform independent and can be run

on any system where Java 1.4 or 1.5 is supported. There are five different editions

available whereas the Community Edition is free and intended for non-commercial

projects. All of the current versions fully support UML 2.0.

3.5.3 Eclipse

Eclipse is an open source community whose projects are focused on providing an

extensible development platform and application frameworks for building software.

The word Eclipse is often used for referring to the Eclipse Software Development Kit

(SDK), which is a Java integrated development environment (IDE). It is a combina-

tion of several Eclipse projects, including Platform, Development Tools, and Plug-in

Development Environment.

The Eclipse workbench provides the structure in which tools interact with the user. It

is based on editors, views, and perspectives and supports multiple user workspaces

CHAPTER 3. SOFTWARE DEVELOPMENT TECHNOLOGIES 31

to store projects. Projects can be placed under version and configuration manage-

ment with an associated team repository whereat support for CVS repositories is

included [Eclipse, 2006]. One of the core features of Eclipse is its Plug-in Architec-

ture which allows easy integration of new plug-ins leading to a vast amount of free

extensions available in the Internet.

Chapter 4

Institute Libraries

In this chapter the used parser for real-time PCR data is explained in detail. Further-

more a detailed description of the incorporated analyzers is given. Finally the user

gains insight into the Genome Usermanagement.

4.1 Parser

Modern real-time PCR thermocyclers allow the storage and exportation of numerous

files, including raw fluorescence data and background subtracted data. Some of this

files are available as text files, others are stored as binaries. The function of the parser

is to read those files and provide a generic interface to access all stored information.

The principle design of the parser consists of two parts. On the one hand it pro-

vides an interface consisting of basic classes that are meant to be used to access the

functionality of the parser. On the other hand it has several implementation classes,

which realize the parsing. Because of the fact that every real-time PCR vendor has

other types of files, the parser has to act differently according to their produced data.

However the results of the parsing process are all accessed through the same generic

interface.

The parser provides information about several things:

Well information General information about each well, including the user de-

fined well name, omitted status, and used master-mix are provided.

CHAPTER 4. INSTITUTE LIBRARIES 33

Detectors It is possible to access the name and the concentration of each de-

tector used for producing fluorescence emission.

Hardware, software Information about the used hardware and software, in-

cluding name and version are supplied.

Thermocycler profile The parser allows the software to readout the performed

thermocycler profile. This incorporates information about duration and tem-

perature of each step and the number of repeats of each cycle.

Raw fluorescence data The complete fluorescence spectra, produced during

the PCR process, can be parsed, which may be used for further analysis and

evaluation. Because all this information is not stored in one file, it is necessary

to specify additional export files in order to get access to the complete fluo-

rescence data. Moreover it is possible to read in background corrected files

whose data is needed by some analysis algorithms.

Dissociation data In order to characterize the generated PCR products it is

common to perform a dissociation curve analysis. After the completed PCR

the temperature is slowly increased up to 95◦C. The increase in temperature

causes PCR products to undergo denaturation, a process accompanied by a

decrease in fluorescence emission. The presence of different PCR products is

reflected in the number of first-derivative peaks. These curves are processed

by the parser and made available through a generic interface.

4.2 Analyzers

Real-time PCR has revolutionized many aspects of genomic research, but without

the proper analysis methods the generated results are useless. Therefore several

methods for analyzing real-time PCR results have been developed. Some of them

were implemented in Java and made available for in-house use.

All these classes extend the same base class that provides a single method for ana-

lyzing PCR data.

ResultData calculate (RTPCRData data);

It takes as input a RTPCRData object, which contains a two dimensional array hold-

ing all wells and their corresponding PCR data. Moreover an optional heading and

description can be specified for each well. The ResultData object contains the

results of the calculation process and specifies Ct value, efficiency, correlation, and

CHAPTER 4. INSTITUTE LIBRARIES 34

starting amount (describing the quantity of the initial template) for each well. Be-

cause not every algorithm computes all these properties, only the calculated ones

are set.

Usually software modules shipped with PCR instruments display the amplification

curves and provide methods to subtract the background signal. However they do

not provide a control mechanism concerning the threshold used for calculating the

Ct value, which is either set manually by the user or determined by the software.

The following methods provide alternative or better solutions to analyze results gen-

erated by real-time PCR.

4.2.1 AnalyzerSoFar

AnalyzerSoFar implements the algorithm described by Wilhelm in [Wilhelm, 2003]

and Wilhelm et al. in [Wilhelm et al., 2003]. SoFar stands for »Software For the Anal-

ysis of Real-time PCR data«. It operates on raw fluorescence data and calculates

Ct value, efficiency, and starting amount. First the data is smoothed using splines,

which is a special function defined piecewise by polynomials. The maximal bend

of this function is used to determine the start of the exponential phase, which is de-

scribed through an exponential or sigmoid function. The specification of the optimal

threshold is performed within the exponential phase using all analyzable standards.

4.2.2 AnalyzerRutledGene

This analyzer operates on the raw fluorescence data and returns only the starting

amount of the used template. It has been originally developed by Rutledge, de-

scribed in [Rutledge, 2004]. The principal idea behind the algorithm is to fit the

data to a four-parametric sigmoid function, which is used to determine the start-

ing amounts of the used templates. In order to achieve accurate results, the plateau

phase of the amplification is not included into the fitting process. To calculate the

initial quantity neither standard curves nor threshold based Ct values are needed.

Instead, it uses the derivative of the sigmoid curve function.

4.2.3 AnalyzerMiner

AnalyzerMiner implements the model described by Zhao and Fernald in [Zhao and

Fernald, 2005]. It operates on the raw fluorescence data and calculates Ct value,

efficiency, and starting amount. First the algorithm fits a four-parameter logistic

CHAPTER 4. INSTITUTE LIBRARIES 35

curve to the data, using it for the determination of the exponential phase. Next it uses

a simple exponential function to model the exponential phase which is done through

an iterative non-linear regression algorithm. The Ct value is set as the end point of

the exponential phase, which is the first positive second derivative maximum of the

logistic model, and the efficiency is determined using a weighted average of the

exponential curve. Once these two values have been computed, they are used to

calculate the starting amount.

4.2.4 TAQAnalyzer

This analyzer is based upon the »Target Analysis Quantification« (TAQ) explained

by Ostermeier et al. in [Ostermeier et al., 2003]. It uses raw fluorescence data and cal-

culates correlation, efficiency, and the initial starting amount of the template. First

the algorithm log-transforms the data and then fits a linear regression equation to

quantify the reaction efficiency and the initial number of target molecules. The ef-

ficiency is reflected by the slope of the equation, whereas the starting amount is

calculated by comparing linear regression equations of known concentrations to the

newly computed curve.

4.2.5 LinRegAnalyzer

The LinRegAnalyzer operates on background corrected files and calculates efficiency,

correlation, and starting amount. Described by Ramakers et al. in [Ramakers et al.,

2003] it uses log transformed values to construct a slope with at least four and no

more than six data points with the highest correlation to the original curve. The

search for the best slope is done using a linear regression algorithm.

4.3 Genome Usermanagement

The Genome Usermanagement is a Java based authentication and authorization sys-

tem originally developed by Dieter Zeller for molecular biology database systems.

It is designed to be used in »web-applications, Microsoft Windows domains, and

Unix/Linux servers« [Zeller, 2005].

Developers can register their application in the centralized usermanagement system

which is administered using a Web interface. Each Web application gets its own

unique password and only if the correct password is transmitted upcoming requests

are processed.

CHAPTER 4. INSTITUTE LIBRARIES 36

By using the Web interface all applications, users, resources, and access rights can

be managed. Users can be assigned to different groups and may be members of

institutes. Through the usermanagement it is possible to control the rights of each

entity and give different access rights to users, institutes, or groups. Moreover it is

possible to inherit access rights allowing a finely granulated control mechanism.

The developed tag libraries are designed to be used within JSPs that either check the

login status of the user or examine the access rights of the logged in user. Therefore

it is possible to assign certain tasks only to users that are part of certain groups, and,

i. e., allow only them to delete entries.

Within Java code the usermanagement can be access through an API which provides

the full functionality. Moreover it is fully integrated into the code generation process

which enables a quick construction of a fully working prototype whenever a new

project is developed.

Chapter 5

Requirements and Design

Determining the requirements of a system is an important process during the pro-

duction of a new application. Only a clear picture of the required functions can lead

to the development of an adequate design. This chapter describes the discovered

requirements and gives a detailed description of the established design.

5.1 Detailed Requirements

The primary goal of this thesis is to develop an application which is able to handle

all data accumulated during a real-time PCR experiment. Moreover it should pro-

vide a centralized system to manage, view, and analyze results produced during the

experiment.

Because of the advantages that a MDA approach offers (described in Chapter 3.1.1

on page 11), the system is based on this architecture. Through the usage of a code

generator, one is able to develop a flexible and easy to maintain system which repre-

sents the developed model.

Amongst others, the following four requirements were determined:

Web-based Biologists working in laboratories often perform their job at sev-

eral different places. Therefore it is very convenient for them to have access,

almost everywhere, to the system they depend on. Web-based systems sat-

isfy this need because the system can be used from every computer having a

connection to the local network or Internet.

CHAPTER 5. REQUIREMENTS AND DESIGN 38

Parse thermocycler data When performing a PCR experiment a lot of data has

to be entered into the thermocycler. In order to avoid the overhead of entering

data twice and to reduce the risk of making errors it is convenient to import

the thermocycler data into the application. Moreover the results of the PCR

process build up a huge amount of data which can only be entered efficient

through the use of a parser.

Incorporate several analyzers As already mentioned in Chapter 2.4 on page 8

and Chapter 4.2 on page 33, raw real-time PCR data has to be analyzed to

get significant and meaningful results. The incorporation of several analyzers

allows the user to easily perform and compare results of different analyzers

without having to use different programs for each algorithm.

Graphical display of data In modern user-friendly interfaces data has to be

displayed graphically, because it is often more meaningful than pure raw-

data tables. Moreover biologists are accommodated to graphs displayed by

the PCR software.

5.2 Typical Workflow

Real-time PCR experiments are always performed within borders of a general pro-

tocol. The different stages of this protocol have been analyzed and major steps were

extracted. These steps were used to define a characteristic workflow when using the

developed system. Figure 5.1 on the following page visualizes these steps trying to

clarify the overall view of the application.

A typical workflow of the application consists of the following nine steps:

Create experiment Experiments are top-level domains that are mainly used to

group different runs, which improves the navigation and usability.

Create run A run represents an actual experiment. It contains information

about the used thermocycler, including its temperature profile, and specifies

the plate, which directly represents the plate used in the PCR machine.

Define properties The conduction of a real-time PCR experiment includes a

variety of components. In order to get a detailed and complete definition

of the experiment, properties and definitions of these components have to

be inserted into the system. This includes, amongst others, the definition of

cDNAs, primers, and detectors.

Perform experiment Ideally, the experiment should be performed after the

previous steps have been carried out.

CHAPTER 5. REQUIREMENTS AND DESIGN 39

Specify file After the real-time PCR experiment has been performed, the gen-

erated file is uploaded into the system and associated with the previously

created run.

Parse file Having attached a file to a run, it is possible to parse the file. This

process enters the plate definition and the corresponding data into the system.

Display plate and charts Once a file has been successfully parsed, the com-

plete plate definition and spectral information is accessible. By displaying, for

example, amplification and dissociation charts, the success and performance

of the experiment can be controlled.

Analyze Having verified that the experiment was successful the generated

data has to be analyzed to get the information originally needed.

View/export results Finally, results generated by the analysis step have to be

evaluated and are used for designing further experiments. Moreover conclu-

sions are drawn based on these findings.

Figure 5.1: Presented is a typical workflow of the developed application. It starts at the top
left corner with creating an experiment and ends at the bottom right corner with exporting and
viewing the generated results.

5.3 UML Diagram

Based on the analysis process, the determined workflow, and the constituents of a

real-time PCR experiment a number of UML diagrams were developed. Generally

CHAPTER 5. REQUIREMENTS AND DESIGN 40

they can be divided into diagrams for general services, entity specifications, and

diagrams needed for creating reports.

5.3.1 Entity diagram

The entity class diagram represents all persistent entities and their relationships. The

complete diagram is shown in Figure B.1 on page 88. It can be separated into three

major parts.

� Run fraction—Figure 5.2 shows all entities that are associated with a run. This

includes hardware, software, instrument setting (represents a thermocycler

temperature profile), category, and the relationship to arbitrary experiments.

Note that one run can be part of many experiments and one experiment can

have any number of runs.

Figure 5.2: Displayed is the part of the class diagram covering the entities that are associated
with a run.

CHAPTER 5. REQUIREMENTS AND DESIGN 41

� Well fraction—The entity well represents the actual reaction room on a plate

where the real-time PCR takes place. Therefore it is the central point of the

application where everything flows together. Directly associated with a well is

the passive reference, the real-time chemistry (also referred to as master-mix),

the detector, and various thermocycler data. A detector consists of an arbitrary

number of primers that have—according to their type—reporters or quenchers

attached. All these entities and their relationships are shown in Figure 5.3.

Figure 5.3: Shown are entities that are directly attached to a well, which represents the real-
time PCR reaction room.

� real-time PCR fraction—Whenever a real-time PCR experiment is executed,

the PCR machine collects a huge amount of data. Figure 5.4 on the follow-

ing page shows the part of the class diagram covering this aspect. It can be

separated into dissociation data (raw and derivative data), raw spectral infor-

mation, amplification data (also referred to as Rn data), and delta Rn data (the

CHAPTER 5. REQUIREMENTS AND DESIGN 42

background subtracted Rn values). After having applied an analyzer on the

real-time PCR data the results are stored in the appropriate entities. There is

also the possibility to analyze one well several times using the same or different

analyzers.

Figure 5.4: Demonstrated are the entities responsible for storing results and spectral informa-
tion of each well.

5.3.2 Report diagram

Report diagrams are used to model basic »reports« using the code generator An-

droMDA. Chapter 6.1 on page 45 describes in detail what exactly is modeled. As an

example the report diagram created for the entity experiment is shown in Figure 5.5

on the following page. The association to the GlobalConstants class produces

static variables used throughout the code, whereas WebConstants are used for

defining HttpSession attributes. The StrutsReportAction creates Struts Ac-

tion and Form classes whereat the ReportService models a stateful session bean

that is necessary for manipulating the entity’s data.

CHAPTER 5. REQUIREMENTS AND DESIGN 43

Figure 5.5: Presented is a complete example for generating a »report« of an entity.

5.3.3 Service diagram

The service diagram displays the most prominent services used in the developed

application—shown in Figure 5.6 on the next page. The RunParseFileSevice is

a MDB that is responsible for calling the appropriate parser methods, creating the

necessary beans, and having them stored in the database. Also designed as a MDB,

the AnalyserService manages the calculation of real-time PCR results using the

incorporated analyzers. The PlateService is a session bean that holds helpful

methods used throughout the application.

CHAPTER 5. REQUIREMENTS AND DESIGN 44

Figure 5.6: Shown are the three major services used in the developed application.

Chapter 6

Implementation

Based on the J2EE framework, the application is designed as a Web-based program.

As storage system it uses an Oracle database whereas the application itself is de-

ployed on a JBoss application server. The administration of the user interface is

managed using the Struts framework in combination with JSPs.

Principally, the implementation of the developed design can be separated into two

parts. The first part consists of creating code using the code generation framework

AndroMDA, which is based on the modeled UML diagrams. Based on this rudimen-

tary prototype, code has to be added or altered manually which is the second part of

the implementation process. Due to the design of AndroMDA the developer is able

to refine the used UML diagrams at any time without having to change or backup a

single line of self-written code.

The implementation process is more or less determined by the code generator which

is used to create an initial, simple prototype. Starting from this initial implementa-

tion, features, design corrections, and additional business functionalities are incor-

porated into the application.

6.1 Report

In this thesis the term report describes the sum of all components needed to provide

an interface that is capable of displaying, editing, and deleting a certain entry of an

entity. Moreover it provides a list showing all created entries according to the users

access rights.

CHAPTER 6. IMPLEMENTATION 46

The creation of these components is based on a special UML model (see Chapter 5.3.2

on page 42) which has a strict design and needs certain stereotypes and class descrip-

tions. Because of the fact that a report can only have one association to an entity, this

diagram has to be designed for each entity where a report is wanted. Once this

model has been applied to the AndroMDA code generator, amongst others, the fol-

lowing things are build:

� JSPs—On the one hand, it generates a JSP page that is used for displaying

all entries of a particular entity. On the other hand a JSP site managing and

showing the properties of a special entity is build.

� Sharing—Whenever a »shared entity« is attached to the entity, a general shar-

ing mechanism is implemented. It allows the user to share his/her created

entity with other users or institutes.

� Action/Form—Having defined a StrutsReportAction class, the appropri-

ate Struts Action and Form classes of an entity are constructed. By setting

different tags the developer is able to control the generation process and is

therefore able to customize the applications behavior.

� Configuration—Entries in the struts-config.xml and application.-
properties files are created that are necessary to deploy a Struts application.

� Session bean—The associated Service is accountable for creating a stateful

session bean matching the associated entity.

The design of the application comprehends the following reports:

� AnalyserAlgoResult

� AnalyserResult

� CDNACreation

� Detector

� DetectorType

� Experiment

� Hardware

� HardwareType

� InstrumentSetting

� ParserResult

CHAPTER 6. IMPLEMENTATION 47

� PassiveReference

� Plate

� PlateSize

� Primer

� PrimerType

� Protocol

� ProtocolType

� Provider

� Quencher

� RealtimeChemistry

� Reporter

� Run

� RunCategory

� Software

� SoftwareType

� Well

6.1.1 List view

Each report defines a JSP page used to display all entries of a certain entity that

belong to the user. Figure 6.1 on the next page displays such a JSP site showing the

entity run.

On top of each page is a header (1) displaying an identifier (normally the entity’s

name) and providing links to query and display setting (2) interfaces. Once the user

has pressed the query link a new mask (3) pops up giving the user the possibility to

search for certain entries. The system provides a number of different operators (4)

and generally all properties (5) of an entity are available for querying. Furthermore

queries can be saved and used in further sessions. Edit Display Setting (6) displays

an additional table underneath the query interface and gives the user the facility to

customize the table showing the list of all owned entries. Again, these settings can

be saved for each user enabling a highly customizable user interface. By default the

CHAPTER 6. IMPLEMENTATION 48

query and display setting interfaces are hidden when a user navigates to such a list

view.

The list itself is divided into pages which consist of either 15, 25, 50, or 100 entries.

Above and below the list is a navigation bar which shows the number of found en-

tries (7), the actual page, the overall number of pages, and the selected number of

items per page (8). Moreover the page provides the possibility to directly jump to a

certain page (9). On top of the list is a header which specifies the different columns

of the table (10). These columns reflect the chosen display setting and change ac-

cording to the user’s preferences. By clicking on the name of the column the list is

sorted corresponding to the selected property. In addition to the values of the chosen

properties each entry has an edit, delete, and sharing button (11), given that sharing

is enabled. By using these buttons the user can edit a selected entry, share it with

other users, or delete it from the system.

Figure 6.1: Shown is an example of a JSP site displaying a list of stored entries. It contains
a header (1) and links (2) to enable querying (3,4,5) and manipulating the look of the list (6).
Moreover it shows how many entries were fetched (7), the number of items per page (8),
and provides the possibility to jump to a certain page (9). The list itself is described by table
headers (10) and each entry has buttons to edit, share, and delete it (11).

CHAPTER 6. IMPLEMENTATION 49

6.1.2 Detail view

The second JSP page that a report creates is used to add, view, edit, or delete a spe-

cific entry. Because the design created by the code generator is very simple almost

every page needs manual revision. Amongst other things, it is necessary to define

the mandatory properties, create associations to other entities (mostly using combo-

boxes), and change the general appearance of the page.

As an example, the primer JSP page is displayed in Figure 6.2. On top of the site is a

header (1) that displays the actual purpose of the page. Next, occurred errors (2) are

shown that present a detailed description of arisen problems. The actual masks of

the properties (3) vary from entity to entity. Generally boxes in pink are mandatory

properties whereas grey boxes mark optional attributes.

Figure 6.2: Presented is a typical JSP page that is used for adding, editing, viewing or deleting
a certain entry. Usually it consists of a header (1) and the mask for editing or viewing the
properties (3). Additionally errors (2) are displayed on top of the page whenever they occurred.

CHAPTER 6. IMPLEMENTATION 50

6.1.3 Struts Action/Form

Each used Action class extends the LookupDispatchAction which enables the

calling of different methods when an HTML form has multiple submit buttons.

The LookupDispatch Action is an abstract Action, mapping a special parame-

ter property to the appropriate method implemented in the subclass.

Typically a generated Action class provides twenty-three different methods. This

includes methods for manipulating the display settings of the corresponding JSP

page, controlling the scrolling mechanism required for viewing already created en-

tries, enabling the sharing of entries, and saving queries defined by a user. Amongst

all these methods, three methods are of major interest when it comes to adapting

the generated code. The findAll method is used to create a list storing all entries

of a certain entity belonging to a user. In order to improve the performance of the

system the list holding all entries consist only of the entities ids. For each new re-

quest a new list storing the actual beans of an entity is created, which minimizes the

overhead of storing non-needed beans. Entries are created, edited, or deleted using

the createEdit method. It is more efficient to combine these three procedures into

one method, because a lot of identical code is used by all of them. The different pro-

cedures are chosen trough a defined Form property. The viewEdit method sets the

Form properties used to display a certain entry. Moreover it is used to create lists

storing the different entries of a drop-down list.

Each generated Struts Form is a Java bean extending the ActionForm class. It con-

sists of the entity’s properties and their getter and setter methods. Furthermore a

few additional methods are defined. The validate method is used to control the

user’s input and generates error messages that appear on the according JSP page,

whenever something went wrong. Form properties are filled using the setForm
method which uses a value object as input parameter. Moreover methods that control

the display setting of the corresponding JSP page are specified.

6.1.4 Stateful session bean

The stateful session bean of a report controls the business logic that is necessary for

retrieving, manipulating, and adding entities. It is stateful because of the fact that

each client creates a list storing all own entries of an entity. This list is unique for

each client and is maintained over multiple conversations demanding for a stateful

session bean. It is used for fetching elements of the entity, controlling the business

logic of the JSP scrolling mechanism, and implementing the sharing mechanism.

CHAPTER 6. IMPLEMENTATION 51

6.2 Parser

The incorporation of the parser is a central part of the developed application. With-

out the possibility to automatically fill in a huge amount of data the system would be

nearly unusable. The functionality is best illustrated by stepping through a typical

parsing job.

6.2.1 Run (JSP/Action)

After a file has been attached to a run the parser can be started by clicking on a

button appearing in the run JSP site. This invokes the createEdit method in the

RunAction class which calls the section responsible for the parser. Because of the

fact that each parsing job creates a new plate, the old plate associated with the run

is deleted. Having completed this task a message is built up which is sent to the

MDB—RunParseFileService. The message contains the following parameters:

� userVO—The user value object contains information about the logged in user.

It is needed to create valid entries into the database concerning the ownership

and sharing mechanism.

� runVO—It is a value object of the actual run holding all information of the

entity.

� fileVO—This value object contains the path of the file that is attached to the

selected run and acts as a source for the parser.

� boolCDNA—Initially, a plate is specified using the PCR machine’s software

module. This application provides the possibility to define a name for each

well on the plate. In some cases the biologist sets this name equal to the used

sample (which is a cDNA), in other cases the name of the used detector is

entered. The Boolean boolCDNA reflects a combo-box which needs to be set

before the parser is started and tells the system if the name of each wells is

equal to the used sample name.

6.2.2 RunParseFileService

Once the sent message has been received by the onMessage method of the MDB

RunParseFileService, the transmitted parameters are unpacked again. In order

to avoid writing corrupt data into the database a global variable has been defined,

which signals the success of the parsing job. Only if nothing went wrong things are

written into the database.

CHAPTER 6. IMPLEMENTATION 52

The following cases are defined that lead to a not successful parsing job:

� the parsing itself went wrong

� used hardware was not found in the system

� used software was not found in the system

� used cDNAs were not found in the system

� used detectors were not found in the system

� passive references were not found in the system

Moreover each parsing job creates a ParserResultVO that contains, amongst other

things, errors, information about problems, and details about the parsed hardware,

software, and instrument setting. This value object is stored in the database and

presented to the user.

The MDB RunParseFileService defines the following methods:

parseFile This method starts the parser and stores the result into a tempo-

rary variable—UnifiedParsersRTPCRData rtdata. This variable con-

tains everything that is stored in the used file. Next appropriate methods are

called to build up value objects that are then written into the database. Fur-

thermore this method creates a ParserResultBeanwhich is used to collect

information during the next steps that are required to build up the Parser-
ResultVO object.

addToDatabase Its purpose is to write the generated value objects into the

database, but it only starts writing them if the parsing job was successful.

Otherwise it creates a new empty plate and attaches it to the used run. This

has to be done, because the old plate was deleted when the MDB was called

and it is necessary that each run has an association to a valid plate.

parseInstrumentSetting The instrument setting reflects the temperature pro-

file used in the thermocycler. Principally it consists of an arbitrary number

of stages, which are also referred to as cycles. Each stage is made up of one

or many steps, whereas each step has a duration and a temperature attribute

defined. The aim of the parseInstrumentSetting method is to search

for an instrument setting in the system that is identical to the current one. If

it finds an appropriate entry it simply creates a reference to the existing in-

strument setting, given that the run has no instrument setting attached. If it

does not find the instrument setting in the system the method creates a new

value object. This object is inserted into the database and associated with the

transmitted run.

CHAPTER 6. IMPLEMENTATION 53

parseSoftwareHardware This method is used to search for existing hardware

and software units that are identical with the current ones. It first checks if

the run has already a hardware or software attached and otherwise sets the

proper links to the found entries. Given that it did not find the fitting entries

it creates an entry in the ParserResultBean object and sets the success of

the parsing job to false.

parsePlateData Provided through the parser are the size of the used plate and

the source file. The method checks if the found plate size is already existent in

the system or, if not, creates a new one. Then it associates the corresponding

size with the plate and sets the input file.

parseWell Aim of the method to create all wells and their attributes. The

parser generates an array holding all wells and their respective attributes that

were stored in the file.

The following things are specified:

� Well position In order to display wells in a table, it is necessary to specify

their exact position. Therefore the x and y coordinates are stored for each

well.

� Well number The well number is a human friendly label specifying the

position of a well on the plate. In most cases it is done by writing the first

coordinate as letter and appending the second coordinate as digit (e. g.

C6).

� cDNA If the user has specified that the names of wells are equal to the

used cDNA names, the method tries to set the appropriate reference.

Therefore it is necessary that each cDNA has been specified before the

parser was started. For each found well name the application checks if

the corresponding cDNA is existent in the system using the findCD-
NACreation method. Having found a missing one it adds the name to

the ParserResultBean and sets the success to false. Found cDNAs

are associated with the corresponding well.

� Task The task of a well displays the purpose of the performed PCR ex-

periment.

� Omitted A well can be set to omitted if it should be excluded by the

PCR machine. The parser signals omitted wells by either setting the

well name to »EMPTY« or excluding them from the list. Therefore the

parseWell method first creates a list of all wells and sets their omitted

status to true. Only if a valid well name has been found this status is

changed to false, guaranteeing that all wells have the correct omitted

status.

� Detectors Each well has one or more detectors associated. Name and

concentration are identified by the parser and the system searches for

CHAPTER 6. IMPLEMENTATION 54

them in the database. Found detectors are associated with the well and

the used concentration is specified. If the used detector is not available

in the database its name is added to the ParserResultBean and the

success is set to false.

� Passive reference Passive references, also referred to as master-mix, need

to be specified before the parser is started. If the identified passive refer-

ence is available in the system, the parseWell method creates an asso-

ciation to the entry. Otherwise it adds the name to the ParserResult-
Bean and sets the success to false.

� Dissociation data The dissociation curves are available as raw and de-

rivative data sets. Available attributes are channel, temperature, dura-

tion, and measurement time-point.

� raw data (spectral information) The raw data reflects the pure measured

fluorescence signal. Stored attributes are channel, duration, tempera-

ture, and time-point.

findDetector This method is used to locate a detector in the system. It either

returns the found value object or a null pointer.

findCDNACreation It is a helper method that is used to find a specific cDNA.

It either returns the found value object or a null pointer.

6.2.3 JSP—ParserResult

Once the parser has finished its job the user needs to get informed about the com-

pletion of the task. Due to the fact that a MDB works asynchronously and is not able

to handle the HTTPSession object, there is no way to send a message to the client

that the bean has finished its work.

Therefore a system has been developed that checks every fifteen seconds if a new

parser result is available. The corresponding JSP page implements a JavaScript func-

tion (updateParserResult) which is repeatedly called using the setInterval
method. UpdateParserResult uses DWR to call a message on the server, which

returns true if a new result is available. Moreover by using JavaScript the method

updates the appearance of the JSP page (see Figure 6.3 on the next page). By clicking

on the link a list appears and the user gets a detailed description about the selected

parser result.

CHAPTER 6. IMPLEMENTATION 55

Figure 6.3: Shown is the message (1) appearing when a new parser result is available.

The parser result page presents the relevant information of a parsing task to the

user. Figure 6.4 on the following page displays the upper part of the result page.

On top of the page a message signals if the job was successful (1). Next, the date

(2), the status of the newly create plate (3), and the name of the run (4) are shown.

The following section covers information about hardware, software, and instrument

setting. Beside each property a message is displayed (5) that tells the user what

the parser has detected. The following messages can appear, whereas »item« is

substituted by hardware, software, or instrument setting:

please add following »item« to the system This message appears given that

the »item« was not found in the system during the parsing process. More-

over a button below the according section is shown which, by clicking on it,

creates the missing entry. Since missing instrument settings are added by the

parser, this message can only emerge for hardware and software modules.

»item« has been specified before parsing This message signals that the user

has already set a reference before the parser was started.

found following »item« in system This message tells the user that the pars-

ing task has found the appropriate entry in the system and has set a reference

to it.

CHAPTER 6. IMPLEMENTATION 56

Figure 6.4: Shown is an example of the first part of a parser result page. It presents the
success of the parsing job (1), the date (2), the status of the plate (3), the run’s name (4), and
reports about the detected hardware, software, and instrument setting (5).

The lower part of the result page, shown in Figure 6.5 on the next page, presents

information about the newly create plate. Displayed are the identifier (1), the name

(2), and the size (3) of the plate. Moreover the user gets the possibility to enter a plate

description (4) and by clicking »Update & goto plate« (5) this description is set and

the user is linked to the new plate. Once this task has been carried out, only a link to

the plate is displayed on further visits. In addition to the used file (6), the status of

the plate (7) is shown on the result page.

Covered by the last part of the result page is the section about missing detectors (8),

cDNAs (9), or passive references (10). The boxes are used to display a list of needed

»items«. These »items« can be either added manually by the user or by clicking

on the button »Add to System« (11), which creates a simple body of the required

entries. This mechanism allows a quick generation of relevant entries that can be

edited and completed at a later date.

CHAPTER 6. IMPLEMENTATION 57

Figure 6.5: Displayed is the second part of the parser result JSP page. It displays information
about the generated plate (1,2,3,6,7) and provides the opportunity to set a plate description
(4,5). Furthermore the missing detectors, cDNAs, and passive references are listed (8,9,10),
which can be added to the system by pressing the corresponding button (11).

6.3 Analyzers

The implementation of the incorporation of analyzers can be divided into two major

parts. The first part regards choosing the analyzers and starting them in a MDB.

Presenting the results is the main function of the second part.

6.3.1 Choosing and starting analyzers

Once the user has pressed the button to analyze a particular plate, a site is displayed

that presents all available analyzers. Figure 6.6 on the following page displays an

example of such an overview page. On top it shows the name of the chosen plate (1)

that simultaneously acts as a link back to the plate site. Below, a list is displayed that

specifies names (2) and descriptions (3) of available analyzers. Each entry offers a

checkbox (4) that is used to select the algorithm utilized to analyze the plate, whereas

it is possible to select multiple analyzers. Pressing on the »Analyse« button sends the

selection to a MDB which starts the analyzation process.

CHAPTER 6. IMPLEMENTATION 58

Figure 6.6: Shown is a JSP site used to select different algorithms for analyzing a plate.
Displayed is the plate name (1), names (2) and descriptions (3) of the analyzers, checkboxes
(4) for selecting them, and a start button (5).

The generation of the list of analyzers is done using the WebPluginManager. This

class extends the PluginManager class which inspects all Java archives (JAR) in a

certain directory and searches for classes extending a certain basis class or imple-

menting a specific interface. The used WebPluginManager looks for classes ex-

tending the TemplateAnalyzer class, because all used analyzers extend this base

class. On the one hand this method guarantees that the list of analyzers is always

up-to-date and on the other it allows a simple addition of analyzers by including

them into a JAR.

Messages that are sent to the MDB AnalyserService contain a list of selected ana-

lyzers, the identifier of the plate, and the user’s value object. Once these parameters

are unpacked the analysePlate method is called. This method performs the fol-

lowing tasks:

� For each analyzer the findResultAlgorithmmethod is called which checks

if the current analyzer is already stored in the database. Given that the analyzer

was found the corresponding value object is returned. Otherwise a new entry

is created and the new value object is returned.

� A new AnalyserResult entry is made which is later used to present details

about the analyzing process to the user.

� Using the attached spectral information of each well a RTPCRData object is

built which acts as input parameter for the analyzers. This objects contains an

array holding either the Rn or delta Rn measurements of the used wells.

CHAPTER 6. IMPLEMENTATION 59

� For each selected analyzer the calculate method is called which returns a

ResultData object. Data stored in this object is examined and written into

a ResultWellVO that is associated with the corresponding well. Exceptions

thrown by analyzers are caught and the error messages are stored in the Anal-
yserResult object and presented to the user.

6.3.2 Presenting results

Having again used a MDB, no mechanism for notifying the user about the comple-

tion of the job is available. Therefore the mechanism used for signaling the finish of

a parsing task, described in Chapter 6.2.3 on page 54, has been adapted to the ana-

lyzer. Figure 6.7 shows the message which is displayed when a new analyzer result

is available.

Figure 6.7: Shown is the message (1) appearing when a new analyzer result is available.

If an analyzing task has been performed on a plate, the JSP page displays a button

which links to the summary site of performed analyzing jobs. An example of this

page is presented in Figure 6.8 on the following page. The business logic needed

for this site is performed in the DisplayAnalyseActionManual class. It checks

every well attached to a plate and searches for analyzer results, because it is possible

that only a few wells were analyzed separately. These results are then collected and

sent to the JSP page.

The corresponding JSP page displays the name of the plate (1) which simultaneously

acts as a link back to the original plate. The analyzer results are bisected into suc-

cessful (2) and not successful (3) jobs. In both cases the analyzer’s name and the date

of execution are displayed. Because of the fact that a plate can be analyzed several

times using the same algorithm, even within one day, the date also displays minutes

and seconds. This allows a better distinction between the completed jobs. Entries for

analyzer tasks that were not successful provide in addition to the analyzer’s name

and the execution date an error message that shows detailed information about the

occurred problem. For each successful task detailed information is available that can

be retrieved by clicking on the corresponding »go« button.

CHAPTER 6. IMPLEMENTATION 60

Figure 6.8: Displayed is the analyzer’s result page. It list all successful (2) and not successful
(3) analyzing jobs and provides a link back to the original plate (1).

Once the user has selected a certain successful analyzer job, a page is presented that

provides detailed information about the completed calculation. An example of such

a site is shown in Figure 6.9 on the next page.

The first part of the page displays the name of the analyzed plate (1), again acting

as a link back to the origin, the used analyzer (2), and the date of the calculation (3).

The second part consists of the computed results which are embedded in a concise

table. Each row consists of the well’s name (4), its corresponding sample (5), and

detectors (6). Moreover Ct value (7), correlation (8), efficiency (9), and the calculated

starting amount (10) are displayed.

This table provides a clear and compact list of relevant data of a real-time PCR exper-

iment. To simplify further analysis, an export function is provided (11) that exports

the list and additional information into a user defined file. Provided are Microsoft

Word and Excel documents, Comma Separated Values (CSV) files, and plain text doc-

uments.

CHAPTER 6. IMPLEMENTATION 61

Figure 6.9: Presented is the page displaying details of a certain analyzer task. It shows
the name of the plate (1), the used analyzer (2), and the calculation date (3). Results are
presented in a table where information about the well (4), its sample (5) and detectors (6),
the calculated Ct value (7), correlation (8), efficiency (9), and starting amount (10) is listed.
Furthermore result can be exported in a file (11), whereas four different types are available.

6.4 Chart generation

Another major part of the developed application is the graphical display of real-time

PCR data. These graphs are based on charts displayed in the various thermocycler

software modules. In order to build up a user-friendly interface it was necessary to

invent a new system using the ideas of Web 2.0, described in Chapter 3.3 on page 18.

Key features of this new system are:

Web 2.0 based Getting rid of the page reloading cycle and blank screens be-

tween user interactions was an important requirement, since it greatly im-

proves the usability of Web applications.

Asynchronous loading Images and additional data are fetched asynchronous-

ly in the background using DWR and Ajax. During the loading process a

message is displayed informing the user of the current activity.

Tabbed charts Because most Web browsers support tabbed browsing users are

familiar with this system. Therefore this technique is utilized for switching

between charts.

CHAPTER 6. IMPLEMENTATION 62

JavaScript functionality A lot of user interactions are handled on the client

side using JavaScript. This reduces a lot of client-server communication and

provides a better event handling mechanism.

Provide familiarity Offering an interface that is as close to the PCR software

as possible improves usability and reduces the need for training, because

users are already accommodated to this interface.

The design of the chart page is illustrated in Figure 6.10 on the next page. The top

of the page is covered by tabs (1) which are used to switch between the different

chart types. Below the navigation bar the actual chart (2) is shown. It is an image

using the Portable Network Graphics (PNG) format, because of its loss-less compres-

sion algorithm. The complete image, including its title (3) and legend (4), is created

by JFreeChart (described in Chapter 3.5.1 on page 29). Underneath the figure a table

representing the used plate is displayed. It is used for selecting single wells, columns

or rows, or the whole plate (5). Omitted wells are colored blue and are not included

in the chart. The red background color is used to mark selected wells, which can be

deselected by clicking on them. Each time wells are selected or deselected the graph

changes according to the current selection.

Figure 6.10 on the next page shows the dissociation curve of three selected wells. In

order to identify them a legend is shown which maps the color of the single slopes to

the well number. This feature allows a quick analysis of the chart and since the PCR

software does not provide a legend it is an important improvement to the standard

system.

CHAPTER 6. IMPLEMENTATION 63

Figure 6.10: Displayed is the dissociation chart of three selected wells (marked in red). The
tabs (1) on the top of the page are used to switch between the different chart types. The
chart itself (2), the title (3), and the legend (4) are built using JFreeChart and are combined in
one image. Below the figure a grid is displayed representing the layout of the used plate. By
clicking on wells they are added or removed from the chart, whereas it is possible to select
the whole plate (5), rows, or columns.

The second tab displays graphs of the derived dissociation curve. These slopes are

more significant than the raw dissociation data, because the peaks signal the dissoci-

ation temperature of the amplified products. Multiple peaks would mean that more

than one molecule has been amplified which is mostly a sign that something went

wrong.

Figure 6.11 on the following page displays an example of a derived dissociation

curve. In this case a complete column has been selected (1), whereas the omitted

wells are not included in the graph.

CHAPTER 6. IMPLEMENTATION 64

Figure 6.11: Shown is an example of a derived dissociation chart. Wells of a certain column
(1) were selected, whereas the omitted wells are not incorporated into the chart.

The spectra tab displays the pure raw fluorescence signal, shown in Figure 6.12 on

the next page. All four channels used by the the PCR system to measure the signal

(each channel uses a different wavelength) are displayed in the figure.

The chart always shows one measurement of all channels (labeled as A, B, C, D) at

one specific cycle. Using a slider (1) gives the user the opportunity to easily change

the cycle number. Moreover, by sliding through the different cycles the progression

of the real-time PCR experiment can be examined.

CHAPTER 6. IMPLEMENTATION 65

Figure 6.12: Presented is a chart showing the full spectral information for a selection of wells.
The figure shows the fluorescence signal of all four channels at one specific cycle. A slider (1)
is used for going through them.

All the presented charts are generated using a developed procedure. Figure 6.13 on

the following page displays a sequence diagram that represents the generated curse

of actions.

Plate.jsp

The process is initiated by clicking on the »Display Parser Results« button,

shown on the plate JSP page, which calls the display method in the Result-
ActionManual class.

CHAPTER 6. IMPLEMENTATION 66

ResultActionManual ParserService ChartViewerResult.jspPlate.jsp

create ()2:

reply ()5:

updateList ()3:

doGet ()6:

create<type>Chart ()4:

updateChart ()7:

display ()1:

Figure 6.13: Shown is a sequence diagram that represents the course of actions needed to
update a chart image

ResultActionManual

ResultActionManual extends the LookupDispatchActionand implements on-

ly the display method. This method gathers information about each well associ-

ated with the selected plate and builds up a list used for displaying the grid in the

corresponding JSP page. This list contains wells which are sorted according to their

well number. Since each plate has a defined plate size, missing wells are filled up in

this list. Moreover a hash-map with the well’s identifier as key and the well number

as value is created and put into the HTTPSession. It is required to build up the

legend of the chart, since only a list of identifiers is sent to the server.

Result.jsp

As soon as the Action has finished its job the Result JSP page is displayed, pre-

senting an empty chart since no selection has been made. In order to provide the

previously described functionality the page is packed with JavaScript. The selec-

tion of the tabs and the complete control mechanism of the grid is realized through

JavaScript. An array variable wells is storing the current selection of wells which

is updated when the user selects or deselects new wells.

Once the user selects a well JavaScript is changing the background color of the cell

and adds this well to the wells list. Now the JavaScript method createChart is

called which invokes a method on the server. This message is sent asynchronously

CHAPTER 6. IMPLEMENTATION 67

using DWR to the ParserService class and contains the list of selected wells and

the current HttpSession object.

ParserService

The create<type>Chartmethod performs the following things:

� Data is fetched out of the database using Java Database Connectivity (JDBC) and

prepared statements. This method is much faster than using Java beans and

avoids the creation of needless objects.

� A dataset is created acting as input parameter for JFreeChart.

� The actual chart is generated using the created dataset and setting the corre-

sponding parameters (e. g. legend, title, background color).

� Directly returning the chart and using it in the JSP page is not possible, because

JavaScript is not able to handle the produced data. Therefore the chart is stored

in the HttpSessionwhereas the actual image production is done by an other

Java class.

Result.jsp

Once the server has notified the JSP page about the completion of its work the figure

needs to be generated. The source of the image tag in the JSP is a Java servlet—

ChartViewer— that returns the produced image. In order to refresh it the complete

image tag is removed and set again by JavaScript. To activate the refresh process in

every browser a random dummy parameter is passed to the servlet.

ChartViewer

The ChartViewer servlet uses a generated chart and builds an image out of it. Im-

age and chart generation process have been separated in order to provide a modular

and reusable system. The Java class reads out the previously generated chart which

is stored in the HttpSession. Next it creates an image using the PNG file format

and sets the response content type to image/png. This allows the browser to in-

terpret the returned object as an image. Moreover parameters in the header tell the

browser not to cache the transferred chart. Finally the created image including the

generated legend is returned to the browser.

Result.jsp

Once the picture is returned to the JSP page the browser replaces the old image with

the new one matching the current well selection. During the exchanging of charts a

messages is presented which tells the user that a new figure is created.

CHAPTER 6. IMPLEMENTATION 68

6.5 General webdesign

An important part in the developed application was the implementation of intuitive

and user friendly interfaces. Since the code generated by AndroMDA is not able to

create interfaces that show relationships to other entities all these connections have

to be implemented by hand. Moreover the Web pages are very simple and require a

lot of refinement work.

6.5.1 Run

In this page all relationships to other entities are realized using combo-boxes. Hard-

ware, software, and instrument setting can be either specified manually or are set by

the parser. The plate’s name (1) is equal to the run’s name at the last parsing task,

whereas the plate can be viewed by clicking on the »show« button (2).

The parsing of a file can be started on this page. Therefore the correct option needs

to be set and a file has to be specified (3). Finally the parser is started by clicking

on the »Parse« button. Because a file can be parsed several times or another input

file may be utilized, the date of the latest successful parsing job is displayed (4). An

example of a run JSP page is displayed in Figure 6.14 on the next page.

CHAPTER 6. IMPLEMENTATION 69

Figure 6.14: Displayed is the interface of a run. Needed for parsing is the definition of a plate
file (3) and the correct setting of the parser option. A click on »Parse« starts the parser which
sets the name of the plate (1) equal to the run’s name and inserts the text to display the latest
successful parsing job (4). The generated plate can be viewed by clicking on »show« (2).

6.5.2 Plate

The plate JSP page is divided into two parts. The first part covers general infor-

mation about the plate and provides links to various additional details. The second

part is occupied by a list containing the associated wells. Figure 6.15 on the following

page shows an example of this JSP site.

Name, description, input file, and size are the displayed properties of a plate. Click-

ing on the button next to »Display Parser Results« (1) lets the chart images appear.

The button besides »Analyse« (2) starts the analyzing process whose results can be

viewed by clicking on the button next to »Display Analyse Results« (3). Pressing

»Add Well« adds a new well to the list as long as the plate size is not reached.

The list of associated wells is embedded in a table which is displayed below the gen-

eral plate information. Each well can be edited or deleted whereas well number,

omitted status, passive reference, cDNA, and task are displayed in the table. To pro-

vide a clear view the table is spitted into several pages containing as many items as

CHAPTER 6. IMPLEMENTATION 70

defined by the user (4). The different pages can be accessed by a scrolling mechanism

(5) or by directly jumping to a certain page (6).

Figure 6.15: Shown is a plate JSP page. It displays information about a plate and provides
links leading to charts (1), to the analyzer results (3), and to the page for starting different
analyzers (2). The list of wells can be scrolled (5,6) and customized by the user (4).

6.5.3 Well

The well JSP page covers all properties of a well, displayed in Figure 6.16 on page 72.

These are:

� well number

� omitted status

� x position—needed to locate the well on the plate

� y position—needed to locate the well on the plate

� reaction volume

CHAPTER 6. IMPLEMENTATION 71

� task

� sample quantity

� sample—is set by the parser if the user has specified it

� sample end concentration

� passive reference

� real-time chemistry

� detector

� description

Since a well can have more than one real-time chemistry or more than one detector

a mechanism has been developed to easily manage these associations. By clicking

on the »add« button (1) a new row pops up where the user can select the required

real-time chemistry or detector (2) and may specify a concentration (3).

By clicking on the delete symbol (4) the entry is deleted from the list. In order to

reduce database transactions these selections are stored in temporary lists which are

committed to the database once the user has pressed the »update« button.

CHAPTER 6. IMPLEMENTATION 72

Figure 6.16: Displayed is the page for manipulating the attributes of a well. Adding or deleting
references to real-time chemistries or wells is done by clicking on a button (1) or image (4).
Each row consists of the entity itself (2) and a user defined concentration (3).

6.5.4 Primer

The primer interface allows the definition of the following attributes: name, se-

quence, sequence position, length, temperature, concentration, lot number (an iden-

tification number), primer, type, author, and description. The type of a primer can

be forward, reverse, or probe (1). If the user has selected a probe primer a reporter and

a quencher need to be specified. The corresponding combo-boxes are only visible

when the selected type is set to probe.

CHAPTER 6. IMPLEMENTATION 73

Figure 6.17: Show is the primer interface. Defining a probe primer (1) requires the definition
of a reporter and a quencher, which are only displayed when the type is set to probe.

6.5.5 Instrument setting

General attributes of an instrument setting are name and description. Each instru-

ment setting consists of a sequence of stages which can be repeated several times. A

stage consist of several steps, whereas each step has a duration and a temperature

specified.

CHAPTER 6. IMPLEMENTATION 74

Figure 6.18: Displayed is the JSP page presenting a certain instrument setting.

Chapter 7

Discussion

The main goal of this thesis was the development of a Web-based application for

managing and analyzing real-time PCR data.

Web-based systems have the advantage to be accessible from any computer having

access to a network and suit therefore the needs of biologists, since they perform

their work at several different places. The application itself is based on the J2EE

platform and has been implemented using a MDA approach. In combination with a

code generator this method allows the implementation of software that reflects the

developed model, is easy to maintain, and simple to extend.

The free available and platform independent J2EE technology supports the devel-

opment of 3-tiered applications. Employing this architecture provides the following

advantages:

� Each tier can be replaced or modified separately without affecting the other

ones.

� J2EE containers provide a mechanism that supports simplified scaling of dis-

tributed applications. Because they may run on multiple systems, containers

can automatically balance load in response to varying demand.

� Since all business logic is performed on the application server, clients require

only rudimentary hardware.

� Security can be implemented at multiple levels making it more difficult for a

client to obtain unauthorized data.

CHAPTER 7. DISCUSSION 76

Although MDA in combination with a code generator has a lot of advantages some

drawbacks have to be considered. Whenever a new technology is used it takes some

time until the code generator has been adapted to it. This is done either by the ven-

dor of the code generator or by the developer who has to implement new templates,

which is mostly a very time-consuming job. Moreover in some cases the model has

to be changed in oder to adapt it to the new technology.

Since each real-time PCR experiment produces a vast amount of data a parser has

been incorporated that automatically reads in the generated measurements. Once

the data is included in the system the user can view the information on graphs that

are based on figures displayed in the PCR software. This unique system adds an

important part to the usability of the software since graphs are often more significant

than pure raw data tables. Moreover it makes use of Web 2.0 ideas that try to remove

the dusty behavior of standard Web applications by implementing features known

from common desktop programs.

Raw real-time PCR data does not provide meaningful results, since it has to be ana-

lyzed first. Usually the biologist has to use several different software modules, has to

handle several sheets just to be able to compare the results, and even has to convert

the data just to be able to use the desired software. Having now the possibility to

use different analyzers (even simultaneously) from one centralized system greatly

enhances the, otherwise arduous, job. Moreover the developed system allows an

easy integration of new analyzers which helps to keep the analysis process up-to-

date. A new analyzer is added to the system by just including its code into a certain

JAR file, whereas the analyzer has to extend the TemplateAnalyzer basis class.

From now on the included analyzer can be used without having to change the code

of the application or adding entries to the database.

All these features in combination with the implemented interfaces and business logic

build up an unique application that can really ease the work with real-time PCR

experiments.

7.1 Usability testing

Usability testing is a method for measuring how well people can use a human-made

product for its intended purpose. Therefore a scenario is provided that contains a

list of tasks that are performed by the user. An observer watches the progress of

the test and takes notes of how well the user executes the given tasks. In order to

get to know the user’s way of thinking he/she is motivated to think aloud (verbal

expressing of thoughts) during the test [Andrews, 2006].

CHAPTER 7. DISCUSSION 77

This kind of test ensures that each user performs the same tasks without having

used the system before. It guides them through the system and its design allows to

test all relevant functions of the application. The thinking aloud method makes sure

that many usability problems are found whereas only a small number of test users

is needed. Moreover it identifies the reason of the occurred problem and eases the

process of finding and correcting them.

The performed usability test consisted of eight different tasks. Five users conducted

the test, whereas three of them are working as biologists and two are computer sci-

entists. Beginning with relatively easy exercises and ending with uncommon tasks,

all primary functions of the software were included in the scenario. To measure the

performance of a user executing a task, the following criteria were defined:

Time For each task the time until the user completed (successful or not suc-

cessful) it was taken.

Errors Errors for each task were collected. An error is either a wrong outcome

or a deviation from the optimal path.

Success For each task one or many success criteria were defined.

After the test has been performed the user was asked to fill out an overall question-

naire, accessible in Chapter C.2 on page 92. Figure 7.1 on the next page displays the

most important results of this evaluation.

CHAPTER 7. DISCUSSION 78

Figure 7.1: Presented is the evaluation of the overall questionnaire. The users were asked to
rate aspects of the system from 1 to 5, where 1 is the best mark.

The test has shown that users are able to handle the application and are quite satis-

fied with the usability. Most difficulties were based on the rather new chart interface,

since users are not accommodated with the provided functionality.

7.2 Perspectives

As the usability test has shown the developed application already improves the work

of real-time PCR experiments. Nevertheless adding additional features to the system

can lead to an even more valuable system.

Identified improvements:

� Incorporation of an improved parser offering the ability to read in additional

datasets and attributes

� Ability to choose the dataset where the analysis is performed on

CHAPTER 7. DISCUSSION 79

� Integration of the amplification plot

� Adding analyzers that are based on the algorithms used in the various PCR

software modules

� Providing a status bar that displays the progress of parser and analyzer jobs

Because of its MDA approach and state-of-the-art software technologies the devel-

oped application acts as a perfect starting point for further enhancements.

Appendix A

User Requirements Document

CHAPTER A. USER REQUIREMENTS DOCUMENT 81

A.0.1 Realtime RT-PCR

Being used as a diagnostic tool both in clinical and research settings, realtime re-

verse transcriptase polymerase chain reaction (realtime RT-PCR) has never been as

important as nowadays. Compared to commonly used techniques like Northern

blot analysis, realtime RT-PCR can be used to quantify RNA from very small sam-

ples. In addition to its great sensibility, which allows detection of products at very

low concentration, it has the advantage of producing results immediately.

The general functionality of realtime RT-PCR can be described as followed: The

quantity of a RNA-sample is determined by doing a normal PCR and comparing

the expression level of the target RNA with a control RNA. To perform a normal PCR

one needs RNA, which is reverse transcribed into cDNA. Moreover dNTPs, a special

polymerase and primers are required.

This cDNA is then amplified by doing a cycle of these steps:

1. Denaturation - performed at approx. 95 °C

During denaturation, the double strand melts open to single stranded DNA.

2. Annealing - performed at approx. 55 °C

Now the primers bind to the complementary strand of the cDNA and the poly-

merase starts copying the template.

3. Extension - performed at approx. 72 °C

The temperature is raised again to 72 °C because this is the ideal working tem-

perature of the used polymerase which now reads the template and adds com-

plementary bases to the strand.

During this process the PCR-machine measures the fluorescence signal in each step

and plots the result. The fluorescence signal is emitted by a special chemistry which

binds on the cDNA. Examples of such chemistries are: TaqMan, Molecular Beacons,

Scorpions and SYBR Green, which is used in our laboratory. The more cDNA is

amplified the stronger the fluorescence signal gets.

The following tasks have to be performed during a realtime RT-PCR experiment:

� RNA extraction

The first step is to extract RNA out of the original sample.

� cDNA synthesis

Then the RNA is reverse transcribed into cDNA.

� Data acquisition

Put the cDNA with appropriate primers, dNTPs, ... into the realtime PCR sys-

tem and start the PCR.

CHAPTER A. USER REQUIREMENTS DOCUMENT 82

� Normalization

After a successful run it is necessary to normalize the data in order to get ap-

propriate results.

� Data analysis

The last step is to analyze the collected data.

A.0.2 Project goal

The aim of this project is to develop a web based database which is able to manage

all accumulated data during a realtime RT-PCR experiment. It provides the possi-

bility to insert/upload data according to the steps of a realtime RT-PCR experiment.

This database will be incorporated into the existing MARS system that enables reuse

of multiple already developed modules.

Due to the fact that realtime RT-PCR experiments can be run with different fluores-

cence chemistries, different quantification methods, ... sundry normalization meth-

ods are incorporated.

Moreover to be able to fully describe samples and its extracts a module using ontolo-

gies will be integrated. The design of this model should be as general as possible so

it can be used in any other project as well.

A.0.3 Software Environment

The project is based on a three tier architecture using the Java 2 Platform, Enterprise

Edition (J2EE). J2EE is a standard for developing multi tier enterprise applications,

that uses Enterprise Java Beans (EJB), Servlets, Java Server Pages (JSP) and XML. The

three tiers in detail:

� Data Tier - Relational database (Oracle).

� Middle Tier - JBoss application server, manages access to database and interac-

tion with data.

� Presentation tier - Web server in conjunction with a servlet-container using

JSPs.

The Open Source project AndroMDA is used to generate deployable code out of

UML models.

CHAPTER A. USER REQUIREMENTS DOCUMENT 83

A.1 Project realization

A.1.1 Introduction

The final software should provide a flexible and easy to use interface and should

offer a complete coverage of the entire realtime RT-PCR process. Due to the fact that

the realtime RT-PCR experiment follows several well defined steps the software will

be divided according to this tasks.

A.1.2 Basic units

Basic units are components which are highly reusable. Therefore they are managed

separately.

A.1.2.1 Protocol

Protocols can be loaded into the system. The user needs to specify a name for the

protocol, chose a category and may enter a description of the protocol. To ensure

that it is readable by the system it has to be in an ASCII format. Additionally the

user can add another file (e.g. in pdf, doc format).

A.1.2.2 Provider

Providers are also managed separately. Mandatory fields are name and abbreviation.

A.1.2.3 Software

The unit software manages the used software systems in different experiment steps.

The user has to define name, version, type and description of it.

A.1.2.4 Hardware

The unit hardware manages the used hardware systems. The user has to define

name, version, type and description of it similar to software systems.

CHAPTER A. USER REQUIREMENTS DOCUMENT 84

A.1.2.5 Upload Zone

In the upload zone the user manages files that are used in the system. Any file that

will be utilized has to be uploaded first and can be analyzed or linked afterwards.

The user has to define name, file type (are managed separately), path to the file and

eventually a description of it. According to the file type the system tries to find an

appropriate parser and stores the data into the database which can now be analyzed

by provided applications.

A.1.3 Experiment

The root of every realtime RT-PCR run is an experiment. The user is able to add new

runs to an experiment as well as modify and delete existing ones.

A.1.4 Run

It describes the entire process of a single realtime RT-PCR run. To ensure maximum

flexibility one run can be used in several experiments. At this stage the user defines

the plate layout (96, 384,...) which is not limited to any special design. Because of

the fact that plates often differ in only a few parameters (used cDNA,...) the user is

able to save a plate design and use it in future runs. Now he/she has to change only

a few parameters and does not have to design the whole plate again.

A.1.4.1 Sample description

The first thing the user needs to specify is the used sample. In the first project phase

the MARS sample description will be used.

At the moment samples can be annotated in a user-customizable manner. Four dif-

ferent annotation types are provided: enumeration, numbers, integers and free text.

In the future it should be possible to annotate samples by using a well defined on-

tology. This system allows better search results and helps structuring annotations.

A.1.4.2 RNA extraction

Now it is necessary to extract the RNA out of the sample. The description of this pro-

cess is also adopted from the MARS database. Amongst other things the extraction

method, quantity and concentration can be specified.

CHAPTER A. USER REQUIREMENTS DOCUMENT 85

A.1.4.3 cDNA creation

Before the RNA is transformed into cDNA all existent DNA is erased by DNAse

treatment. To describe this step the user can upload a protocol (step is optional).

To perform the PCR one needs to transform the RNA into a cDNA. The used protocol

can be uploaded or manually inserted into the system. Moreover the final amount

and concentration of cDNA and the dilution factor can be entered.

A.1.4.4 PCR

The following parameters have to be specified when performing the PCR run:

� Master-mix

Specify the used master-mix by chosing it from a list and insert the accordant

concentration. If a self-made mastermix is used the user can specify the corre-

sponding protocol.

� Primer

Define the used primer (chose from a combobox) and insert concentration and

used amount. Information about sequence, length, melting point, author and

provider can be stored.

� Realtime Chemistries

Specify the realtime chemistry (e.g. TaqMan, Scorpions, SYBR, ...) by choosing

an entry from a list. The list is managed separately. In addition information

about provider, version, ... can be saved.

� Passive reference (ROX)

Define the used ROX Reference Dye from a given list. If necessary the user can

add entries to the list.

� dNTPs

Specify the used dNTPs, amount, provider.

� cDNA

Define the amount, concentration and the used cDNA.

A.1.4.5 Results

Most of the data that is necessary for displaying the results is stored into a file which

is generated by the realtime PCR system. This file is parsed by the software and

the data is stored into the database. Additionally the required data can be inserted

manually. The following parameters have to be specified:

CHAPTER A. USER REQUIREMENTS DOCUMENT 86

� Used software

The used software is chosen from a list. If necessary the user can add entries to

the list.

� Plate design

According to the previously defined plate the data is either inserted manually

or parsed out of the result file.

Properties for each well are:

– sample name

– use

– detector

– reporter

– quencher

– task

– quantity

– color

– passive reference

– omitted

� PCR parameters

Parameters concerning the PCR are either inserted manually or parsed out of

the result file. Information about the used temperatures, durations, cycles is

stored.

� Melting point

Define the temperature for the dissociation protocol. Additionally the dissoci-

ation figure will be displayed.

� Sample volume

Specifies the used volume in each well.

� Figures

Figures that are generated by the realtime PCR system are rebuilt by the soft-

ware using the result file.

Relevant for evaluating results are:

– Amplification Plot

– Standard Curve

– Dissociation Figure

CHAPTER B. CLASS DIAGRAM 88

Appendix B

Class diagram

Figure B.1: Presented is the complete entity diagram.

Appendix C

Usability testing

C.1 Task-list and test-score

This list displays each task and shows the collected results. Time is taken in minutes,

errors are counted as they occurred (also wrong paths are counted as error), and

success is noted in percentages.

1. Add an Experiment filling all fields

Bio1 Bio2 Bio3 IT1 IT2

Time 0.66 0.9 0.66 1 0.9

Errors 0 0 0 0 0

Success 100 100 100 100 100

Table C.1: Score—Add experiment

2. Add a Run and fill out »Name«, »Date«, and »Category« and specify Experi-

ment

CHAPTER C. USABILITY TESTING 90

Bio1 Bio2 Bio3 IT1 IT2

Time 2.75 2.25 0.75 0.9 1

Errors 1 1 0 0 0

Success 75 75 100 100 100

Table C.2: Score—Add run

3. Upload a Plate-File and specify it as »Plate«

Bio1 Bio2 Bio3 IT1 IT2

Time 1 0.75 0.66 1.33 1.4

Errors 0 1 0 0 0

Success 100 100 100 100 100

Table C.3: Score—Upload file

4. Edit and Update newly added Run: specify the newly added Plate and change

Name

Bio1 Bio2 Bio3 IT1 IT2

Time 3 1.25 1.17 2.33 1.5

Errors 2 1 0 2 0

Success 100 75 100 100 100

Table C.4: Score—Edit run

5. Select Run and start Parser

Bio1 Bio2 Bio3 IT1 IT2

Time 1.75 0.75 0.9 0.83 0.5

Errors 0 0 0 1 0

Success 100 100 100 100 100

Table C.5: Score—Start parser

6. View Parser results

CHAPTER C. USABILITY TESTING 91

Bio1 Bio2 Bio3 IT1 IT2

Time 1.17 0.66 0.75 2.33 0.66

Errors 0 0 0 2 0

Success 100 100 100 100 100

Table C.6: Score—View parser results

7. View Plate of added Run and show Well A5

Bio1 Bio2 Bio3 IT1 IT2

Time 2 0.5 0.9 0.833 2.33

Errors 0 0 0 1 3

Success 100 100 100 100 50

Table C.7: Score—View plate

8. Display »Parser Results« of Plate and

� View Dissociation of well A6

� View Spectra of column 4

Bio1 Bio2 Bio3 IT1 IT2

Time 6.66 3.25 1.5 1.5 0.75

Errors 1 2 0 1 1

Success 100 100 100 100 75

Table C.8: Score—View charts

CHAPTER C. USABILITY TESTING 92

C.2 Overall questionnaire

Figure C.1: Shown is the overall questionnaire given to each user after completing the tasks.

CHAPTER C. USABILITY TESTING 93

Bio1 Bio2 Bio3 IT1 IT2

Interface 2 2 1 2 1

Navigation 2 2 1 2 2

Labels/Fields 1 1 1 1 1

Information 2 2 1 2 1

Messages 3 3 2 3 2

Speed 1 3 2 3 1

User friendly 2 3 1 1 1

Systems behavior 3 3 2 2 3

Functions 2 2 1 2 2

Reliability 2 1 1 1

Easy to use 2 2 1 2 2

Comfortableness 1 2 1 1 1

Improve PCR work 2 2 1 1

I like system 2 2 1 1 1

Table C.9: Score—Overall questionnaire

Figures

2.1 Three steps of a typical PCR cycle (taken from [Florida Museum of
Natural History, 2006]) . 7

3.1 Illustration of the MVC paradigm (taken from [Husted et al., 2003]) . . 19

3.2 Life-cycle of an Ajax-enabled Web form (taken from [Telerik Corpora-
tion, 2005]) . 22

3.3 DWR—alteration of a selection list (taken from [Getahead, 2005]) . . . 24

3.4 Flowchart of an AndroMDA build process (taken from [Truskaller, 2003]) 26

5.1 Typical workflow of the developed application 39

5.2 Class diagram—run . 40

5.3 Class diagram—well . 41

5.4 Class diagram—results/spectral information 42

5.5 Class diagram—report . 43

5.6 Class diagram—services . 44

6.1 JSP—example of list view . 48

6.2 JSP—example of detailed view . 49

6.3 Message for new parser result . 55

6.4 Part 1 of parser result page . 56

6.5 Part 2 of parser result page . 57

6.6 Selection of algorithm for analyzing plate 58

6.7 Message for new analyzer result . 59

6.8 Analyzer result page . 60

6.9 Details of an analyzer task . 61

6.10 Chart—dissociation . 63

6.11 Chart—dissociation derivative . 64

6.12 Chart—spectra . 65

6.13 Chart—sequence diagram . 66

FIGURES 95

6.14 Interface—run . 69

6.15 Interface—plate . 70

6.16 Interface—well . 72

6.17 Interface—primer . 73

6.18 Interface—instrument setting . 74

7.1 Usability testing—evaluation of questionnaire 78

B.1 Class diagram—complete . 88

C.1 Usability testing—overall questionnaire 92

Tables

C.1 Score—Add experiment . 89

C.2 Score—Add run . 90

C.3 Score—Upload file . 90

C.4 Score—Edit run . 90

C.5 Score—Start parser . 90

C.6 Score—View parser results . 91

C.7 Score—View plate . 91

C.8 Score—View charts . 91

C.9 Score—Overall questionnaire . 93

Bibliography

[Abd-Elsalam, 2003] Kamel A. Abd-Elsalam. Bioinformatic tools and guideline for PCR
primer design. African Journal of Biotechnology, 2(5):91–95, May 2003. Accessible through the
Web at »http://www.academicjournals.org/ajb/PDF/Pdf2003/MayPDFs2003/
Abd-Elsalam.pdf« (last visited on May 12, 2006).

[Alur et al., 2001] Deepak Alur, Dan Malks, and John Crupi. Designing Enterprise Applications–
with the Java 2 Platform, Enterprise Edition. Prentice Hall PTR, New Jersey, 2001.

[Andrews, 2006] Keith Andrews. Human-Computer Interaction, 2006. Accessible through the
Web at »http://courses.iicm.edu/hci/hci.pdf« (last visited on June 3, 2006).

[AndroMDA, 2005a] AndroMDA. AndroMDA Cartridges, November 2005. Ac-
cessible through the Web at »http://galaxy.andromda.org/docs-3.1/
andromda-cartridges/index.html« (last visited on April 17, 2006).

[AndroMDA, 2005b] AndroMDA. What is AndroMDA?, November 2005. Accessible through
the Web at »http://galaxy.andromda.org/docs-3.1/whatisit.html« (last visit-
ed on April 17, 2006).

[Apache Software Foundation, 2006a] Apache Software Foundation. Ant, January 2006. Ac-
cessible through the Web at »http://ant.apache.org« (last visited on April 26, 2006).

[Apache Software Foundation, 2006b] Apache Software Foundation. Maven, April 2006. Ac-
cessible through the Web at »http://maven.apache.org« (last visited on April 26,
2006).

[Bodoff et al., 2001] Stephanie Bodoff, Dale Green, Eric Jendrock, Monica Pawlan, and Beth
Stearns. The J2EE Tutorial. Sun Microsystems, Inc, 2001.

[Cavaness, 2002] Chuck Cavaness. Programming Jakarta Struts. O’Reilly & Associates, Beijing ·
Cambridge · Farnham · Köln · Paris · Sebastopol · Taipei · Tokyo, November 2002.

[Eclipse, 2006] Eclipse. Eclipse Platform Technical Overview, 2006. Accessible through
the Web at »http://www.eclipse.org/articles/Whitepaper-Platform-3.1/
eclipse-platform-whitepaper.pdf« (last visited on April 24, 2006).

[Elrich, 1989] Henry A. Elrich. PCR Technology: Principles and Applications for DNA amplifica-
tion. Stockton Press, New York, 1989.

[Fields et al., 1999] Stanley Fields, Yuji Kohara, and David J. Lockhart. Funtional genomics.
Proc. Natl. Acad. Aci. USA, 96:8825–8826, August 1999.

[Florida Museum of Natural History, 2006] Florida Museum of Natural History. PCR, 2006.
Accessible through the Web at »http://www.flmnh.ufl.edu/cowries/PCR.gif«
(last visited on May 13, 2006).

http://www.academicjournals.org/ajb/PDF/Pdf2003/MayPDFs2003/Abd-Elsalam.pdf
http://www.academicjournals.org/ajb/PDF/Pdf2003/MayPDFs2003/Abd-Elsalam.pdf
http://www.academicjournals.org/ajb/PDF/Pdf2003/MayPDFs2003/Abd-Elsalam.pdf
http://courses.iicm.edu/hci/hci.pdf
http://courses.iicm.edu/hci/hci.pdf
http://galaxy.andromda.org/docs-3.1/andromda-cartridges/index.html
http://galaxy.andromda.org/docs-3.1/andromda-cartridges/index.html
http://galaxy.andromda.org/docs-3.1/andromda-cartridges/index.html
http://galaxy.andromda.org/docs-3.1/whatisit.html
http://galaxy.andromda.org/docs-3.1/whatisit.html
http://ant.apache.org
http://ant.apache.org
http://maven.apache.org
http://maven.apache.org
http://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-whitepaper.pdf
http://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-whitepaper.pdf
http://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-whitepaper.pdf
http://www.flmnh.ufl.edu/cowries/PCR.gif
http://www.flmnh.ufl.edu/cowries/PCR.gif

BIBLIOGRAPHY 98

[Gamma et al., 1995] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Publishing Com-
pany, Reading, Massachusetts, 1995.

[Getahead, 2005] Getahead. DWR: Easy AJAX for JAVA, August 2005. Accessible through
the Web at »http://getahead.ltd.uk/dwr/overview/dwr« (last visited on April 19,
2006).

[Gilbert, 2002] David Gilbert. The JFreeChart Class Library - Reference Documentation, June 2002.

[Gilbert, 2005] David Gilbert. The JFreeChart Class Library - Installation Guide, December 2005.

[Human Genome Project, 2004] Human Genome Project. Human Genome Project Information,
2004. Accessible through the Web at »http://www.ornl.gov/sci/techresources/
Human_Genome/home.shtml« (last visited on April 10, 2006).

[Husted et al., 2003] Ted Husted, Cedric Dumoulin, George Franciscus, and David Winter-
feldt. Struts in Action–Building web applications with the leading Java framework. Manning
Publications Co, Greenwich, 2003.

[Kassem and the Enterprise Team, 2000] Nicholas Kassem and the Enterprise Team. Core
J2EE Patterns: Best Practices and Design Strategies, Volume 1.0.1. Sun Microsystems, Inc, Oc-
tober 2000. Accessible through the Web at »http://java.sun.com/j2ee/1.4/docs/
tutorial/doc/J2EETutorial.pdf« (last visited on April 22, 2006).

[Lodish et al., 2000] Harvey Lodish, Arnold Berk, S. Lawrence Zipursky, Paul Matsudaira,
and David Baltimore. Molecular Cell Biology. W. H. Freeman Company, New York, 4th Edi-
tion, 2000.

[McLaughlin, 2006] Brett McLaughlin. Mastering Ajax, Part 2: Make asynchronous requests with
JavaScript and Ajax, 2006. Accessible through the Web at »http://www-128.ibm.com/
developerworks/java/library/wa-ajaxintro2/index.html« (last visited on A-
pril 26, 2006).

[Miller and Mukerji, 2003] Joaquin Miller and Jishnu Mukerji. MDA Guide Version 1.0.1, June
2003. Accessible through the Web at »http://www.omg.org/docs/omg/03-06-01.
pdf« (last visited on April 20, 2006).

[No Magic Inc., 2006] No Magic Inc. Introducing MagicDraw, March 2006. Accessible through
the Web at »http://www.magicdraw.com« (last visited on April 24, 2006).

[Object Management Group, 2005] Object Management Group. Introduction to OMG’s Unified
Modeling Language (UML), July 2005. Accessible through the Web at »http://www.omg.
org/gettingstarted/what_is_uml.htm« (last visited on April 19, 2006).

[Object Management Group, 2006] Object Management Group. About the Object Management
Group, 2006. Accessible through the Web at »http://www.omg.org/gettingstarted/
gettingstartedindex.htm« (last visited on April 23, 2006).

[Ostermeier et al., 2003] G. Charles Ostermeier, Zhandong Liu, Rui Pires Martins, Rikki R.
Bharadwaj, James Ellis, Sorin Draghici, and Stephen A. Krawetz. Nuclear matrix associa-
tion of the human β-globin locus utilizing a novel approach to quantitative real-time PCR.
Nucleic Acids Research, 31(12):3257–3266, 2003.

[Ramakers et al., 2003] Christian Ramakers, Jan M. Ruijter, Ronald H. Lekanne Deprez, and
Antoon F.M. Moorman. Assumption-free analysis of quantitative real-time polymerase
chain reaction (PCR) data . Neuroscience Letters, 339:62–66, 2003.

[Roman et al., 2002] Ed Roman, Scott Ambler, and Tyler Jewell. Mastering Enterprise JavaBeans.
John Wiley & Sons, Brisbane · Chichester · New York · Singapore · Toronto · Weinheim,
second Edition, 2002.

http://getahead.ltd.uk/dwr/overview/dwr
http://getahead.ltd.uk/dwr/overview/dwr
http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml
http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml
http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/J2EETutorial.pdf
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/J2EETutorial.pdf
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/J2EETutorial.pdf
http://www-128.ibm.com/developerworks/java/library/wa-ajaxintro2/index.html
http://www-128.ibm.com/developerworks/java/library/wa-ajaxintro2/index.html
http://www-128.ibm.com/developerworks/java/library/wa-ajaxintro2/index.html
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.magicdraw.com
http://www.magicdraw.com
http://www.omg.org/gettingstarted/what_is_uml.htm
http://www.omg.org/gettingstarted/what_is_uml.htm
http://www.omg.org/gettingstarted/what_is_uml.htm
http://www.omg.org/gettingstarted/gettingstartedindex.htm
http://www.omg.org/gettingstarted/gettingstartedindex.htm
http://www.omg.org/gettingstarted/gettingstartedindex.htm

BIBLIOGRAPHY 99

[Roth and Pelegri-Llopart, 2003] Mark Roth and Eduardo Pelegri-Llopart. JavaServer Pages
Specification - Version 2.0, 2003. Accessible through the Web at »http://jakarta.
apache.org/velocity/index.html« (last visited on April 22, 2006).

[Rutledge, 2004] R. G. Rutledge. Sigmoidal curve-fitting redefines quantitative real-time PCR
with the prospective of developing automated high-throughput applications. Nucleic Acids
Research, 32(22), 2004.

[Sebastiani et al., 2003] Paola Sebastiani, Emanuela Gussoni, Isaac S. Kohane, and Marco F.
Ramoni. Statistical Challenges in Functional Genomics. Statistical Science, 18, 2003.

[Struts, 2006] Struts. The Struts tag-library, April 2006. Accessible through the
Web at »http://struts.apache.org/struts-action/struts-taglib/index.
html« (last visited on April 26, 2006).

[Telerik Corporation, 2005] Telerik Corporation. Using AJAX in Web Applications–A Practical
Guide for ASP.NET Developers, January 2005. Accessible through the Web at »http://www.
telerik.com/documents/Telerik_and_AJAX.pdf« (last visited on April 21, 2006).

[Truskaller, 2003] Thomas Truskaller. Data Integration into a Gene Expression Database, 2003.

[Velocity, 2005a] Velocity. Velocity Overview, 2005. Accessible through the Web at »http://
jakarta.apache.org/velocity/overview.html« (last visited on April 21, 2006).

[Velocity, 2005b] Velocity. What is Velocity?, 2005. Accessible through the Web at »http://
jakarta.apache.org/velocity/index.html« (last visited on April 21, 2006).

[Wilhelm et al., 2003] Jochen Wilhelm, Alfred M. Pingoud, and Meinhard Hahn. SoFAR: soft-
ware for fully automatic evaluation of real-time PCR data. BioTechniques, 34(2):324–332,
February 2003.

[Wilhelm, 2003] Jochen Wilhelm. Entwicklung real-time-PCR-basierter Methoden für die moderne
DNA-Analytik. PhD thesis, Justus-Liebig-Universität Gießen, 2003.

[Wong and Medrano, 2005] Marisa L. Wong and Juan F. Medrano. Real-time PCR for mRNA
quantitiation. BioTechniques, 39:75–85, July 2005.

[XDoclet, 2005] XDoclet. Welcome! What is XDoclet?, 2005. Accessible through the Web at
»http://xdoclet.sourceforge.net/« (last visited on April 24, 2006).

[Zammetti, 2005] Frank W. Zammetti. Ajax using XMLHttpRequest and Struts, 2005. Ac-
cessible through the Web at »http://www.omnytex.com/articles/xhrstruts/
xhrstruts.pdf« (last visited on April 21, 2006).

[Zeller, 2005] Dieter Zeller. Design and development of a user management system for molec-
ular biology database systems, 2005. Accessible through the Web at »http://xdoclet.
sourceforge.net/« (last visited on April 24, 2006).

[Zhao and Fernald, 2005] Sheng Zhao and Russell D. Fernald. Comprehensive Algorithm
for Quantitative Real-Time Polymerase Chain Reaction. Journal of Computational Biology,
12(8):1047–1064, 2005.

http://jakarta.apache.org/velocity/index.html
http://jakarta.apache.org/velocity/index.html
http://jakarta.apache.org/velocity/index.html
http://struts.apache.org/struts-action/struts-taglib/index.html
http://struts.apache.org/struts-action/struts-taglib/index.html
http://struts.apache.org/struts-action/struts-taglib/index.html
http://www.telerik.com/documents/Telerik_and_AJAX.pdf
http://www.telerik.com/documents/Telerik_and_AJAX.pdf
http://www.telerik.com/documents/Telerik_and_AJAX.pdf
http://jakarta.apache.org/velocity/overview.html
http://jakarta.apache.org/velocity/overview.html
http://jakarta.apache.org/velocity/overview.html
http://jakarta.apache.org/velocity/index.html
http://jakarta.apache.org/velocity/index.html
http://jakarta.apache.org/velocity/index.html
http://xdoclet.sourceforge.net/
http://xdoclet.sourceforge.net/
http://www.omnytex.com/articles/xhrstruts/xhrstruts.pdf
http://www.omnytex.com/articles/xhrstruts/xhrstruts.pdf
http://www.omnytex.com/articles/xhrstruts/xhrstruts.pdf
http://xdoclet.sourceforge.net/
http://xdoclet.sourceforge.net/
http://xdoclet.sourceforge.net/

	Diplomarbeit
	Contents
	1 Introduction
	2 Biological Background Information
	2.1 DNA, mRNA
	2.2 Functional Genomics
	2.3 Polymerase Chain Reaction
	2.4 Real-time PCR

	3 Software Development Technologies
	3.1 Standards
	3.1.1 Model Driven Architecture
	3.1.2 Unified Modeling Language
	3.1.3 XML Metadata Interchange Format

	3.2 Java 2 Enterprise Edition
	3.2.1 Client Tier
	3.2.2 Web Tier
	3.2.2.1 Servlet
	3.2.2.2 JSP

	3.2.3 Business Tier
	3.2.3.1 Enterprise JavaBeans

	3.2.4 Enterprise Information System Tier
	3.2.5 J2EE Patterns

	3.3 Web Technologies
	3.3.1 Struts
	3.3.1.1 The Controller
	3.3.1.2 The View
	3.3.1.3 The Model
	3.3.1.4 Features

	3.3.2 Ajax
	3.3.3 Direct Web Remoting

	3.4 Code Generation
	3.4.1 AndroMDA
	3.4.1.1 Cartridges
	3.4.1.2 Velocity Templates

	3.4.2 XDoclet

	3.5 Development Tools and Libraries
	3.5.1 JFreechart
	3.5.2 MagicDraw
	3.5.3 Eclipse

	4 Institute Libraries
	4.1 Parser
	4.2 Analyzers
	4.2.1 AnalyzerSoFar
	4.2.2 AnalyzerRutledGene
	4.2.3 AnalyzerMiner
	4.2.4 TAQAnalyzer
	4.2.5 LinRegAnalyzer

	4.3 Genome Usermanagement

	5 Requirements and Design
	5.1 Detailed Requirements
	5.2 Typical Workflow
	5.3 UML Diagram
	5.3.1 Entity diagram
	5.3.2 Report diagram
	5.3.3 Service diagram

	6 Implementation
	6.1 Report
	6.1.1 List view
	6.1.2 Detail view
	6.1.3 Struts Action/Form
	6.1.4 Stateful session bean

	6.2 Parser
	6.2.1 Run (JSP/Action)
	6.2.2 RunParseFileService
	6.2.3 JSP---ParserResult

	6.3 Analyzers
	6.3.1 Choosing and starting analyzers
	6.3.2 Presenting results

	6.4 Chart generation
	6.5 General webdesign
	6.5.1 Run
	6.5.2 Plate
	6.5.3 Well
	6.5.4 Primer
	6.5.5 Instrument setting

	7 Discussion
	7.1 Usability testing
	7.2 Perspectives

	A User Requirements Document
	A.0.1 Realtime RT-PCR
	A.0.2 Project goal
	A.0.3 Software Environment

	A.1 Project realization
	A.1.1 Introduction
	A.1.2 Basic units
	A.1.2.1 Protocol
	A.1.2.2 Provider
	A.1.2.3 Software
	A.1.2.4 Hardware
	A.1.2.5 Upload Zone

	A.1.3 Experiment
	A.1.4 Run
	A.1.4.1 Sample description
	A.1.4.2 RNA extraction
	A.1.4.3 cDNA creation
	A.1.4.4 PCR
	A.1.4.5 Results

	B Class diagram
	C Usability testing
	C.1 Task-list and test-score
	C.2 Overall questionnaire

	Figures
	Tables
	Bibliography

