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Support Vector Machines Basics – An Introduction Only 

Vojislav Kecman 

The University of Auckland, Auckland, New Zealand 

Abstract. 

 

This is a booklet about (machine) learning from empirical data (i.e., examples, samples, 

measurements, records, patterns or observations) by applying support vector machines 

(SVMs) a.k.a. kernel machines. The basic aim of this report is to give, as far as possible, a 

condensed (but systematic) presentation of a novel learning paradigm embodied in SVMs. 

Our focus will be on the constructive learning algorithms for both the classification (pat-

tern recognition) and regression (function approximation) problems. Consequently, we will 

not go into all the subtleties and details of the statistical learning theory (SLT) and struc-

tural risk minimization (SRM) which are theoretical foundations for the learning algo-

rithms presented below. This seems more appropriate for the application oriented readers. 

The theoretically minded and interested reader may find an extensive presentation of both 

the SLT and SRM in (Vapnik, 1995, 1998; Cherkassky and Mulier, 1998; Cristianini and 

Shawe-Taylor, 2001; Kecman, 2001; Schölkopf and Smola 2002). Instead of diving into a 

theory, a quadratic programming based learning leading to parsimonious SVMs will be 

presented in a gentle way - starting with linear separable problems, through the classifica-

tion tasks having overlapped classes but still a linear separation boundary, beyond the line-

arity assumptions to the nonlinear separation boundary, and finally to the linear and 

nonlinear regression problems. Here, the adjective ‘parsimonious’ denotes a SVM with a 

small number of support vectors (‘hidden layer neurons’). The scarcity of the model results 

from a sophisticated, QP based, learning that matches the model capacity to the data com-

plexity ensuring a good generalization, i.e., a good performance of SVM on the future, 

previously, during the training unseen, data.  

Same as the neural networks (or similarly to them), SVMs possess the well-known 

ability of being universal approximators of any multivariate function to any desired degree 

of accuracy. Consequently, they are of particular interest for modeling the unknown, or 

partially known, highly nonlinear, complex systems, plants or processes. Also, at the very 

beginning, and just to be sure what the whole booklet is about, we should state clearly 

when there is no need for an application of SVMs’ model-building techniques. In short, 

whenever there exists an analytical closed-form model (or it is possible to devise one) 

there is no need to resort to learning from empirical data by SVMs (or by any other type of 

a learning machine). 
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1 Basics of learning from data 

SVMs have been developed in the reverse order to the development of neural networks 

(NNs). SVMs evolved from the sound theory to the implementation and experiments, 

while the NNs followed more heuristic path, from applications and extensive experimenta-

tion to the theory. It is interesting to note that the very strong theoretical background of 

SVMs did not make them widely appreciated at the beginning. The publication of the first 

papers by Vapnik, Chervonenkis (Vapnik and Chervonenkis, 1965) and co-workers went 

largely unnoticed till 1992. This was due to a widespread belief in the statistical and/or 

machine learning community that, despite being theoretically appealing, SVMs are neither 

suitable nor relevant for practical applications. They were taken seriously only when excel-

lent results on practical learning benchmarks were achieved (in numeral recognition, com-

puter vision and text categorization). Today, SVMs show better results than (or compara-

ble outcomes to) NNs and other statistical models, on the most popular benchmark 

problems.  

The learning problem setting for SVMs is as follows: there is some unknown and 

nonlinear dependency (mapping, function) y = f(x) between some high-dimensional input 

vector x and scalar output y (or the vector output y as in the case of multiclass SVMs). 

There is no information about the underlying joint probability functions here. Thus, one 

must perform a distribution-free learning. The only information available is a training data 

set D = �(xi, yi) � X x Y�, i = 1, l, where l stands for the number of the training data pairs 

and is therefore equal to the size of the training data set D. Often, yi is denoted as di, where 

d stands for a desired (target) value. Hence, SVMs belong to the supervised learning tech-

niques. 

Note that this problem is similar to the classic statistical inference. However, there are 

several very important differences between the approaches and assumptions in training 

SVMs and the ones in classic statistics and/or NNs modeling. Classic statistical inference 

is based on the following three fundamental assumptions: 
 

1. Data can be modeled by a set of linear in parameter functions; this is a foundation 

of a parametric paradigm in learning from experimental data.  

2. In the most of real-life problems, a stochastic component of data is the normal 

probability distribution law, that is, the underlying joint probability distribution is 

a Gaussian distribution. 

3. Because of the second assumption, the induction paradigm for parameter estima-

tion is the maximum likelihood method, which is reduced to the minimization of 

the sum-of-errors-squares cost function in most engineering applications. 
 

All three assumptions on which the classic statistical paradigm relied turned out to be in-

appropriate for many contemporary real-life problems (Vapnik, 1998) because of the fol-

lowing facts:  
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1. Modern problems are high-dimensional, and if the underlying mapping is not very 

smooth the linear paradigm needs an exponentially increasing number of terms 

with an increasing dimensionality of the input space X (an increasing number of 

independent variables). This is known as ‘the curse of dimensionality’. 

2. The underlying real-life data generation laws may typically be very far from the 

normal distribution and a model-builder must consider this difference in order to 

construct an effective learning algorithm. 

3. From the first two points it follows that the maximum likelihood estimator (and 

consequently the sum-of-error-squares cost function) should be replaced by a new 

induction paradigm that is uniformly better, in order to model non-Gaussian dis-

tributions. 
 

In addition to the three basic objectives above, the novel SVMs’ problem setting and in-

ductive principle have been developed for standard contemporary data sets which are typi-

cally high-dimensional and sparse (meaning, the data sets contain small number of the 

training data pairs). 

SVMs are the so-called ‘nonparametric’ models. ‘Nonparametric’ does not mean that 

the SVMs’ models do not have parameters at all. On the contrary, their ‘learning’ (selec-

tion, identification, estimation, training or tuning) is the crucial issue here. However, 

unlike in classic statistical inference, the parameters are not predefined and their number 

depends on the training data used. In other words, parameters that define the capacity of 

the model are data-driven in such a way as to match the model capacity to data complexity. 

This is a basic paradigm of the structural risk minimization (SRM) introduced by Vapnik 

and Chervonenkis and their coworkers that led to the new learning algorithm. Namely, 

there are two basic constructive approaches possible in designing a model that will have a 

good generalization property (Vapnik, 1995 and 1998):  
 

1. choose an appropriate structure of the model (order of polynomials, number of 

HL neurons, number of rules in the fuzzy logic model) and, keeping the estima-

tion error (a.k.a. confidence interval, a.k.a. variance of the model) fixed in this 

way, minimize the training error (i.e., empirical risk), or 

2. keep the value of the training error (a.k.a. an approximation error, a.k.a.an empiri-

cal risk) fixed (equal to zero or equal to some acceptable level), and minimize the 

confidence interval. 
 

Classic NNs implement the first approach (or some of its sophisticated variants) and SVMs 

implement the second strategy. In both cases the resulting model should resolve the trade-

off between under-fitting and over-fitting the training data. The final model structure (its 

order) should ideally match the learning machines capacity with training data complexity. 

This important difference in two learning approaches comes from the minimization of dif-

ferent cost (error, loss) functionals. Table 1 tabulates the basic risk functionals applied in 

developing the three contemporary statistical models. 
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Table 1: Basic Models and Their Error (Risk) Functionals 

 

             Closeness to data = training error, a.k.a. empirical risk 
 

di stands for desired values, w is the weight vector subject to training, � is a regularization 

parameter, P is a smoothness operator, L
�
 is a SVMs’ loss function, h is a VC dimension 

and � is a function bounding the capacity of the learning machine. In classification prob-

lems L
�
 is typically 0-1 loss function, and in regression problems L

�
 is the so-called Vap-

nik’s �-insensitivity loss (error) function 
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where � is a radius of a tube within which the regression function must lie, after the suc-

cessful learning. (Note that for �  = 0, the interpolation of training data will be performed). 

It is interesting to note that (Girosi, 1997) has shown that under some constraints the SV 

machine can also be derived from the framework of regularization theory rather than SLT 

and SRM. Thus, unlike the classic adaptation algorithms (that work in the L2 norm), SV 

machines represent novel learning techniques which perform SRM. In this way, the SV 

machine creates a model with minimized VC dimension and when the VC dimension of 

the model is low, the expected probability of error is low as well. This means good per-

formance on previously unseen data, i.e. a good generalization. This property is of particu-

lar interest because the model that generalizes well is a good model and not the model that 

performs well on training data pairs. Too good a performance on training data is also 

known as an extremely undesirable overfitting. 

As it will be shown below, in the ‘simplest’ pattern recognition tasks, support vector 

machines use a linear separating hyperplane to create a classifier with a maximal margin. 

In order to do that, the learning problem for the SV machine will be cast as a constrained 

nonlinear optimization problem. In this setting the cost function will be quadratic and the 

constraints linear (i.e., one will have to solve a classic quadratic programming problem). 

In cases when given classes cannot be linearly separated in the original input space, the 

SV machine first (non-linearly) transforms the original input space into a higher dimen-

sional feature space. This transformation can be achieved by using various nonlinear map-

pings; polynomial, sigmoidal as in multilayer perceptrons, RBF mappings having as the 

basis functions radially symmetric functions such as Gaussians, or multiquadrics or differ-
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ent spline functions. After this nonlinear transformation step, the task of a SV machine in 

finding the linear optimal separating hyperplane in this feature space is ‘relatively trivial’. 

Namely, the optimization problem to solve in a feature space will be of the same kind as 

the calculation of a maximal margin separating hyperplane in original input space for line-

arly separable classes. How, after the specific nonlinear transformation, nonlinearly sepa-

rable problems in input space can become linearly separable problems in a feature space 

will be shown later. 

In a probabilistic setting, there are three basic components in all learning from data 

tasks: a generator of random inputs x, a system whose training responses y (i.e., d) are 

used for training the learning machine, and a learning machine which, by using inputs xi 

and system’s responses yi, should learn (estimate, model) the unknown dependency be-

tween these two sets of variables defined by the weight vector w (Fig 1).  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 A model of a learning machine (top) w = w(x, y) that during the training phase (by observ-

ing inputs xi to, and outputs yi from, the system) estimates (learns, adjusts, trains, tunes) its parame-

ters (weights) w, and in this way learns mapping y = f(x, w) performed by the system. The use of 

fa(x, w) ~ y denotes that we will rarely try to interpolate training data pairs. We would rather seek an 

approximating function that can generalize well. After the training, at the generalization or test 

phase, the output from a machine o = fa(x, w) is expected to be ‘a good’ estimate of a system’s true 

response y. 

The figure shows the most common learning setting that some readers may have already 

seen in various other fields - notably in statistics, NNs, control system identification and/or 

This connection is present  
only during the learning phase. 
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in signal processing. During the (successful) training phase a learning machine should be 

able to find the relationship between an input space X and an output space Y, by using data 

D in regression tasks (or to find a function that separates data within the input space, in 

classification ones). The result of a learning process is an ‘approximating function’ fa(x, 
w), which in statistical literature is also known as, a hypothesis fa(x, w). This function ap-

proximates the underlying (or true) dependency between the input and output in the case of 

regression, and the decision boundary, i.e., separation function, in a classification. The 

chosen hypothesis fa(x, w) belongs to a hypothesis space of functions H (fa � H), and it is a 

function that minimizes some risk functional R(w). 

It may be practical to remind the reader that under the general name ‘approximating 

function’ we understand any mathematical structure that maps inputs x into outputs y. 

Hence, an ‘approximating function’ may be: a multilayer perceptron NN, RBF network, 

SV machine, fuzzy model, Fourier truncated series or polynomial approximating function. 

Here we discuss SVMs. A set of parameters w is the very subject of learning and generally 

these parameters are called weights. These parameters may have different geometrical 

and/or physical meanings. Depending upon the hypothesis space of functions � we are 

working with the parameters w are usually: 
 

- the hidden and the output layer weights in multilayer perceptrons, 

- the rules and the parameters (for the positions and shapes) of fuzzy subsets, 

- the coefficients of a polynomial or Fourier series, 

- the centers and (co)variances of Gaussian basis functions as well as the output layer 

weights of this RBF network, 

- the support vector weights in SVMs. 
 

There is another important class of functions in learning from examples tasks. A learning 

machine tries to capture an unknown target function fo(x) that is believed to belong to 

some target space T, or to a class T, that is also called a concept class. Note that we rarely 

know the target space T and that our learning machine generally does not belong to the 

same class of functions as an unknown target function fo(x). Typical examples of target 

spaces are continuous functions with s continuous derivatives in n variables; Sobolev 

spaces (comprising square integrable functions in n variables with s square integrable de-

rivatives), band-limited functions, functions with integrable Fourier transforms, Boolean 

functions, etc. In the following, we will assume that the target space T is a space of differ-

entiable functions. The basic problem we are facing stems from the fact that we know very 

little about the possible underlying function between the input and the output variables. All 

we have at our disposal is a training data set of labeled examples drawn by independently 

sampling a (X x Y) space according to some unknown probability distribution.  

The learning-from-data problem is ill-posed. (This will be shown on Figs 2 and 3 for a 

regression and classification examples respectively). The basic source of the ill-posedness 

of the problem is due to the infinite number of possible solutions to the learning problem. 
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At this point, just for the sake of illustration, it is useful to remember that all functions that 

interpolate data points will result in a zero value for training error (empirical risk) as 

shown (in the case of regression) in Fig 2. The figure shows a simple example of three-out-

of-infinitely-many different interpolating functions of training data pairs sampled from a 

noiseless function y = sin(x).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Three-out-of-infinitely-many interpolating functions resulting in a training error equal to 0. 

However, a thick solid, dashed and dotted lines are bad models of a true function y = sin(x) (thin 

dashed line). 

In Fig 2, each interpolant results in a training error equal to zero, but at the same time, each 

one is a very bad model of the true underlying dependency between x and y, because all 

three functions perform very poorly outside the training inputs. In other words, none of 

these three particular interpolants can generalize well. However, not only interpolating 

functions can mislead. There are many other approximating functions (learning machines) 

that will minimize the empirical risk (approximation or training error) but not necessarily 

the generalization error (true, expected or guaranteed risk). This follows from the fact that 

a learning machine is trained by using some particular sample of the true underlying func-

tion and consequently it always produces biased approximating functions. These approxi-

mants depend necessarily on the specific training data pairs (i.e., the training sample) used. 

Fig 3 shows an extremely simple classification example where the classes (represented 

by the empty training circles and squares) are linearly separable. However, in addition to a 

linear separation (dashed line) the learning was also performed by using a model of a high 

capacity (say, the one with Gaussian basis functions, or the one created by a high order 

polynomial, over the 2-dimensional input space) that produced a perfect separation bound-

ary (empirical risk equals zero) too. However, such a model is overfitting the data and it 

will definitely perform very badly on, during the training unseen, test examples. Filled cir-

cles and squares in the right hand graph are all wrongly classified by the nonlinear model. 
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Note that a simple linear separation boundary correctly classifies both the training and the 

test data. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Overfitting in the case of linearly separable classification problem. Left: The perfect classi-

fication of the training data (empty circles and squares) by both low order linear model (dashed line) 

and high order nonlinear one (solid wiggly curve). Right: Wrong classification of all the test data 

shown (filled circles and squares) by a high capacity model, but correct one by the simple linear 

separation boundary. 

A solution to this problem proposed in the framework of the SLT is restricting the hy-

pothesis space H of approximating functions to a set smaller than that of the target function 

T while simultaneously controlling the flexibility (complexity) of these approximating 

functions. This is ensured by an introduction of a novel induction principle of the SRM and 

its algorithmic realization through the SV machine. The Structural Risk Minimization 

principle (Vapnik, 1979) tries to minimize an expected risk (the cost function) R compris-

ing two terms as given in Table 1 for the SVMs 
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holds. The first term on the right hand side is named a VC confidence (confidence term or 

confidence interval) that is defined as 
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The parameter h is called the VC (Vapnik-Chervonenkis) dimension of a set of functions. 

It describes the capacity of a set of functions implemented in a learning machine. For a bi-
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nary classification h is the maximal number of points which can be separated (shattered) 

into two classes in all possible 2h ways by using the functions of the learning machine.  
 

A SV (learning) machine can be thought of as 

o a set of functions implemented in a SVM,  

o an induction principle and,  

o an algorithmic procedure for implementing the induction principle on the  

       given set of functions.  
 

The notation for risks given above by using R(wn) denotes that an expected risk is calcu-

lated over a set of functions fan(x, wn) of increasing complexity. Different bounds can also 

be formulated in terms of other concepts such as growth function or annealed VC entropy. 

Bounds also differ for regression tasks. More detail can be found in (Vapnik, 1995, as well 

as in Cherkassky and Mulier, 1998). However, the general characteristics of the depend-

ence of the confidence interval on the number of training data l and on the VC dimension h 

is similar and given in Fig 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 The dependency of VC confidence interval �(h, l, �) on the number of training data l and 

the VC dimension h (h < l ) for a fixed confidence level 1 - � = 1 – 0.11 = 0.89. 

Equations (2) show that when the number of training data increases, i.e., for l � � (with 

other parameters fixed), an expected (true) risk R(wn) is very close to empirical risk 

Remp(wn) because � � 0. On the other hand, when the probability 1 - � (also called a con-

fidence level which should not be confused with the confidence term �) approaches 1, the 

generalization bound grows large, because in the case when � � 0 (meaning that the con-

fidence level 1 - � �  1), the value of � � �. This has an obvious intuitive interpretation 

(Cherkassky and Mulier, 1998) in that any learning machine (model, estimates) obtained 

from a finite number of training data cannot have an arbitrarily high confidence level. 
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There is always a trade-off between the accuracy provided by bounds and the degree of 

confidence (in these bounds). Fig 4 also shows that the VC confidence interval increases 

with an increase in a VC dimension h for a fixed number of the training data pairs l. 

The SRM is a novel inductive principle for learning from finite training data sets. It 

proved to be very useful when dealing with small samples. The basic idea of the SRM is to 

choose (from a large number of possibly candidate learning machines), a model of the 

right capacity to describe the given training data pairs. As mentioned, this can be done by 

restricting the hypothesis space H of approximating functions and simultaneously by con-

trolling their flexibility (complexity). Thus, learning machines will be those parameterized 

models that, by increasing the number of parameters (typically called weights wi here), 

form a nested structure in the following sense  
 

H1 � H2 � H3 � … Hn - 1 � Hn � … � H (3) 
 

In such a nested set of functions, every function always contains a previous, less complex, 

function. Typically, Hn may be: a set of polynomials in one variable of degree n; fuzzy 

logic model having n rules; multilayer perceptrons, or RBF network having n HL neurons, 

SVM structured over n support vectors. The goal of learning is one of a subset selection 

that matches training data complexity with approximating model capacity. In other words, 

a learning algorithm chooses an optimal polynomial degree or, an optimal number of HL 

neurons or, an optimal number of FL model rules, for a polynomial model or NN or FL 

model respectively. For learning machines linear in parameters, this complexity (expressed 

by the VC dimension) is given by the number of weights, i.e., by the number of ‘free pa-

rameters’. For approximating models nonlinear in parameters, the calculation of the VC 

dimension is often not an easy task. Nevertheless, even for these networks, by using simu-

lation experiments, one can find a model of appropriate complexity. 
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2 Support Vector Machines in Classification and Regression 

Below, we focus on the algorithm for implementing the SRM induction principle on the 

given set of functions. It implements the strategy mentioned previously – it keeps the train-

ing error fixed and minimizes the confidence interval. We first consider a ‘simple’ exam-

ple of linear decision rules (i.e., the separating functions will be hyperplanes) for binary 

classification (dichotomization) of linearly separable data. In such a problem, we are able 

to perfectly classify data pairs, meaning that an empirical risk can be set to zero. It is the 

easiest classification problem and yet an excellent introduction of all relevant and impor-

tant ideas underlying the SLT, SRM and SVM.  

Our presentation will gradually increase in complexity. It will begin with a Linear 

Maximal Margin Classifier for Linearly Separable Data where there is no sample overlap-

ping. Afterwards, we will allow some degree of overlapping of training data pairs. How-

ever, we will still try to separate classes by using linear hyperplanes. This will lead to the 

Linear Soft Margin Classifier for Overlapping Classes. In problems when linear decision 

hyperplanes are no longer feasible, the mapping of an input space into the so-called feature 

space (that ‘corresponds’ to the HL in NN models) will take place resulting in the Nonlin-

ear Classifier. Finally, in the subsection on Regression by SV Machines we introduce same 

approaches and techniques for solving regression (i.e., function approximation) problems. 

2.1 Linear Maximal Margin Classifier for Linearly Separable Data 

Consider the problem of binary classification or dichotomization. Training data are given 

as 
 

(x1, y1), (x2, y2), . . ., (xl, yl), x � � n, y � {+1, -1} (4) 
 

For reasons of visualization only, we will consider the case of a two-dimensional input 

space, i.e., x � � 2. Data are linearly separable and there are many different hyperplanes 

that can perform separation (Fig 5). (Actually, for x � � 2, the separation is performed by 

‘planes’ w1x1 + w2x2 + b = o. In other words, the decision boundary, i.e., the separation 

line in input space is defined by the equation w1x1 + w2x2 + b = 0.). How to find ‘the best’ 

one? The difficult part is that all we have at our disposal are sparse training data. Thus, we 

want to find the optimal separating function without knowing the underlying probability 

distribution P(x, y). There are many functions that can solve given pattern recognition (or 

functional approximation) tasks. In such a problem setting, the SLT (developed in the early 

1960s by Vapnik and Chervonenkis) shows that it is crucial to restrict the class of func-

tions implemented by a learning machine to one with a complexity that is suitable for the 

amount of available training data.  
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In the case of a classification of linearly separable data, this idea is transformed into the 

following approach – among all the hyperplanes that minimize the training error (i.e., em-

pirical risk) find the one with the largest margin. This is an intuitively acceptable approach. 

Just by looking at Fig 5 we will find that the dashed separation line shown in the right 

graph seems to promise probably good classification while facing previously unseen data 

(meaning, in the generalization, i.e. test, phase). Or, at least, it seems to probably be better 

in generalization than the dashed decision boundary having smaller margin shown in the 

left graph. This can also be expressed as that a classifier with smaller margin will have 

higher expected risk. 

By using given training examples, during the learning stage, our machine finds parame-

ters w = [w1 w2 … wn]
T and b of a discriminant or decision function d(x, w, b) given as 

 

d(x, w, b) = wTx + b = 
1

n

i ii
w x b

�

�� , (5) 

 

where  x, w � � n, and the scalar b is called a bias. (Note that the dashed separation lines 

in Fig 5 represent the line that follows from d(x, w, b) = 0). After the successful training 

stage, by using the weights obtained, the learning machine, given previously unseen pat-

tern xp, produces output o according to an indicator function given as 
 

iF = o = sign(d(xp, w, b)), (6) 
 

where o is the standard notation for the output from the learning machine. In other words, 

the decision rule is: 
 

if d(xp, w, b) > 0, the pattern xp belongs to a class 1 (i.e., o = y1 = +1),  

    and 

if d(xp, w, b) < 0 the pattern xp belongs to a class 2 (i.e., o = y2 = -1). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Two-out-of-many separating lines: a good one with a large margin (right) and a less ac-

ceptable separating line with a small margin, (left). 
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The indicator function iF given by (6) is a step-wise (i.e., a stairs-wise) function (see Figs 6 

and 7). At the same time, the decision (or discriminant) function d(x, w, b) is a hyperplane. 

Note also that both a decision hyperplane d and the indicator function iF live in an n + 1-

dimensional space or they lie ‘over’ a training pattern’s n-dimensional input space. There 

is one more mathematical object in classification problems called a separation boundary 

that lives in the same n-dimensional space of input vectors x. Separation boundary sepa-

rates vectors x into two classes. Here, in cases of linearly separable data, the boundary is 

also a (separating) hyperplane but of a lower order than d(x, w, b). The decision (separa-

tion) boundary is an intersection of a decision function d(x, w, b) and a space of input fea-

tures. It is given by  

 

d(x, w, b) = 0. (7) 
 

All these functions and relationships can be followed, for two-dimensional inputs x, in Fig 

6. In this particular case, the decision boundary i.e., separating (hyper)plane is actually a 

separating line in a x1 – x2 plane and, a decision function d(x, w, b) is a plane over the 2-

dimensional space of features, i.e., over a x1 – x2 plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6 The definition of a decision (discriminant) function or hyperplane d(x, w, b), a decision 

(separating) boundary d(x, w, b) = 0 and an indicator function iF = sign(d(x, w, b)) which value 

represents a learning, or SV, machine’s output o. 

In the case of 1-dimensional training patterns x (i.e., for 1-dimensional inputs x to the 

learning machine), decision function d(x, w, b) is a straight line in an x-y plane. An inter-

section of this line with an x-axis defines a point that is a separation boundary between two 

classes. This can be followed in Fig 7. Before attempting to find an optimal separating hy-

Support vectors 
are star data 

Input x2 

Input x1  

The separation boundary is 
an intersection of d(x, w, b) 
with the input plane (x1, x2). 
Thus it is:  wTx + b = 0 

The decision function (optimal canonical 
separating hyperplane) d(x, w, b) is an 
argument of the indicator function. 

Desired value y     Indicator function 
    iF(x, w, b) = sign(d) 

+1 
 

 
0 
 

 
-1 

d(x, w, b) 

Input plane  
(x1, x2) 

Input plane  
(x1, x2) 

Margin M 



14      Vojislav Kecman 

perplane having the largest margin, we introduce the concept of the canonical hyperplane. 

We depict this concept with the help of the 1-dimensional example shown in Fig 7.Not 

quite incidentally, the decision plane d(x, w, b) shown in Fig 6 is also a canonical plane. 

Namely, the values of d and of iF are the same and both are equal to |1| for the support vec-

tors depicted by stars. At the same time, for all other training patterns |d| > | iF |. In order to 

present a notion of this new concept of the canonical plane, first note that there are many 

hyperplanes that can correctly separate data. In Fig 7 three different decision functions d(x, 

w, b) are shown. There are infinitely many more. In fact, given d(x, w, b), all functions 

d(x, kw, kb), where k is a positive scalar, are correct decision functions too. Because pa-

rameters (w, b) describe the same separation hyperplane as parameters (kw, kb) there is a 

need to introduce the notion of a canonical hyperplane:  

A hyperplane is in the canonical form with respect to training data x � X if  

 

�min | | 1
i

T
i

x X

b
�

� �w x . (8) 

 

The solid line d(x, w, b) = -2x + 5 in Fig 7 fulfills (8) because its minimal absolute value 

for the given six training patterns belonging to two classes is 1. It achieves this value for 

two patterns, chosen as support vectors, namely for x3 = 2, and x4 = 3. For all other pat-

terns, |d| > 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7 SV classification for 1-dimensional inputs by the linear decision function. Graphical pres-

entation of a canonical hyperplane. For 1-dimensional inputs, it is actually a canonical straight line 

(depicted as a thick straight solid line) that passes through points (+2, +1) and (+3, -1) defined as the 

support vectors (stars). The two dashed lines are the two other decision hyperplanes (i.e., straight 

lines). The training input patterns {x1 = 0.5, x2 = 1, x3 = 2} � Class 1 have a desired or target value 

(label) y1 = +1. The inputs {x4 = 3, x5 = 4, x6 = 4.5, x7 = 5} � Class 2 have the label y2 = -1.  

Target y, i.e., d 
The decision function is a (canonical) hyperplane d(x, w, b).  
For a 1-dim input, it is a (canonical) straight line. 

The decision boundary. 
For a 1-dim input, it is a 
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The indicator function iF = sign(d(x, w, b)) is  
a step-wise function. It is a SV machine output o. 
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Note an interesting detail regarding the notion of a canonical hyperplane that is easily 

checked. There are many different hyperplanes (planes and straight lines for 2-D and 1-D 

problems in Figs 6 and 7 respectively) that have the same separation boundary (solid line 

and a dot in Figs 6 (right) and 7 respectively). At the same time there are far fewer hyper-

planes that can be defined as canonical ones fulfilling (8). In Fig 7, i.e., for a 1-

dimensional input vector x, the canonical hyperplane is unique. This is not the case for 

training patterns of higher dimension. Depending upon the configuration of class’ ele-

ments, various canonical hyperplanes are possible. 

Therefore, there is a need to define an optimal canonical hyperplane (OCSH) as a ca-

nonical hyperplane having a maximal margin. This search for a separating, maximal mar-

gin, canonical hyperplane is the ultimate learning goal in statistical learning theory under-

lying SV machines. Carefully note the adjectives used in the previous sentence. The 

hyperplane obtained from a limited training data must have a maximal margin because it 

will probably better classify new data. It must be in canonical form because this will ease 

the quest for significant patterns, here called support vectors. The canonical form of the 

hyperplane will also simplify the calculations. Finally, the resulting hyperplane must ulti-

mately separate training patterns. 

We avoid the derivation of an expression for the calculation of a distance (margin M) 

between the closest members from two classes for its simplicity. The curious reader can 

derive the expression for M as given below, or it can look in (Kecman, 2001) or other 

books. The margin M can be derived by both the geometric and algebraic argument and is 

given as 

 

2
M �

w
. (9) 

 

This important result will have a great consequence for the constructive (i.e., learning) al-

gorithm in a design of a maximal margin classifier. It will lead to solving a quadratic pro-

gramming (QP) problem which will be shown shortly. Hence, the ‘good old’ gradient 

learning in NNs will be replaced by solution of the QP problem here. This is the next im-

portant difference between the NNs and SVMs and follows from the implementation of 

SRM in designing SVMs, instead of a minimization of the sum of error squares, which is a 

standard cost function for NNs. 

Equation (9) is a very interesting result showing that minimization of a norm of a hy-

perplane normal weight vector ||w|| = 2 2 2
1 2

T
nw w w� � � �w w �  leads to a maximization 

of a margin M. Because a minimization of f  is equivalent to the minimization of f, the 

minimization of a norm ||w|| equals a minimization of wTw = 2 2 2 2
1 21

n

i ni
w w w w

�

� � � �� � , 

and this leads to a maximization of a margin M. Hence, the learning problem is 
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minimize    
1

2
wTw, (10a) 

subject to constraints introduced and given in (10b) below. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8 The optimal canonical separating hyperplane (OCSH) with the largest margin intersects 

halfway between the two classes. The points closest to it (satisfying yj|w
Txj + b| = 1, j = 1, NSV) are 

support vectors and the OCSH satisfies yi(w
Txi + b) � 1 i = 1, l (where l denotes the number of train-

ing data and NSV stands for the number of SV). Three support vectors (x1 and x2 from class 1, and x3 

from class 2) are the textured training data. 

(A multiplication of wTw by 0.5 is for numerical convenience only, and it doesn’t change 

the solution). Note that in the case of linearly separable classes empirical error equals zero 

(Remp = 0 in (2a)) and minimization of wTw corresponds to a minimization of a confidence 

term �. The OCSH, i.e., a separating hyperplane with the largest margin defined by M = 2 

/ ||w||, specifies support vectors, i.e., training data points closest to it, which satisfy yj[w
Txj 

+ b] � 1, j = 1, NSV. For all the other (non-SVs data points) the OCSH satisfies inequalities 

yi[w
Txi + b] > 1. In other words, for all the data, OCSH should satisfy the following con-

straints 

 

yi[w
Txi + b] � 1,          i = 1, l (10b) 

 

where l denotes a number of training data points, and NSV stands for a number of SVs. The 

last equation can be easily checked visually in Figs 6 and 7 for 2-dimensional and 1-

dimensional input vectors x respectively. Thus, in order to find the OCSH having a maxi-

mal margin, a learning machine should minimize ||w||2 subject to the inequality constraints 

(10b). This is a classic quadratic optimization problem with inequality constraints. Such 

x2 
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an optimization problem is solved by the saddle point of the Lagrange functional (Lagran-

gian)1
  

 

L(w, b, ) = 
1

1
{ [ ] 1}

2

l
T T

i i i
i

y b�
�

� � ��w w w x  (11) 

 

where the �i are Lagrange multipliers. The search for an optimal saddle point (wo, bo, o ) 

is necessary because Lagrangian L must be minimized with respect to w and b, and has to 

be maximized with respect to nonnegative �i (i.e., �i � 0 should be found). This problem 

can be solved either in a primal space (which is the space of parameters w and b) or in a 

dual space (which is the space of Lagrange multipliers �i). The second approach gives in-

sightful results and we will consider the solution in a dual space below. In order to do that, 

we use Karush-Kuhn-Tucker (KKT) conditions for the optimum of a constrained function. 

In our case, both the objective function (11) and constraints (10b) are convex and KKT 

conditions are necessary and sufficient conditions for a maximum of (11). These condi-

tions are: 
 

at the saddle point (wo, bo, o ), derivatives of Lagrangian L with respect to primal vari-

ables should vanish which leads to,  

 

1

0, i.e.,
l

o i i i
io

L
y�

�

�
� �

� �w x
w

 (12) 

1

0, i.e., 0
l

i i
io

L
y

b
�

�

�
� �

� �  (13) 

 

and the KKT complementarity conditions below (stating that at the solution point the 

products between dual variables and constraints equals zero) must also be satisfied,  

 

�i{yi[w
Txi + b]-1} = 0, i = 1, l. (14) 

 

Substituting (12) and (13) into a primal variables Lagrangian L(w, b, ) (11), we change 

to the dual variables Lagrangian Ld(�) 

 

Ld(�) = 
1 , 1

1

2

l l
T

i i j i j i j
i i j

y y� � �
� �

�� � x x . (15) 

 

In order to find the optimal hyperplane, a dual Lagrangian Ld( ) has to be maximized with 

respect to nonnegative �i (i.e., �i must be in the nonnegative quadrant) and with respect to 

the equality constraint as follows 

 

                                                           
1 In forming the Lagrangian, for constraints of the form fi > 0, the inequality constraints equations are 

multiplied by nonnegative Lagrange multipliers (i.e., �i � 0) and subtracted from the objective 
function.  
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i� � 0,  i = 1, l (16a) 

1

0
l

i i
i

y�
�

��  (16b) 

 

Note that the dual Lagrangian Ld( ) is expressed in terms of training data and depends 

only on the scalar products of input patterns (xi
Txj). The dependency of Ld( ) on a scalar 

product of inputs will be very handy later when analyzing nonlinear decision boundaries 

and for general nonlinear regression. Note also that the number of unknown variables 

equals the number of training data l. After learning, the number of free parameters is equal 

to the number of SVs but it does not depend on the dimensionality of input space. Such a 

standard quadratic optimization problem can be expressed in a matrix notation and formu-

lated as follows: 
 

Maximize 

Ld( ) = 0.5 T T� �� � , (17a) 

subject to 
yT = 0, (17b) 

 

�i � 0,   i = 1, l (17c) 
 

where =[�1, �2, . . ., �l]
T, H denotes the Hessian matrix ( Hij =yiyj(xixj) = yiyjx

T
ixj ) of this 

problem, and f is an (l, 1) unit vector f = 1 = [1 1 . . . 1]T. (Note that maximization of (17a) 

equals a minimization of Ld( ) = 0.5 T T�� � , subject to the same constraints). Solu-

tions �oi of the dual optimization problem above determine the parameters wo and bo of the 

optimal hyperplane according to (12) and (14) as follows 

 

1

l

o o i ii
i

y�
�

��w x , (18a) 

1 1

1 1 1
( ( ) ( ( )SV SVN NT T

o s o s s os s
SV s SV

b y
N y N� �

� � � �� �x w x w ,     s = 1, NSV. (18b) 

 

In deriving (18b) we used the fact that y can be either +1 or -1, and 1/y = y. NSV denotes the 

number of support vectors. There are two important observations about the calculation of 

wo. First, an optimal weight vector wo, is obtained in (18a) as a linear combination of the 

training data points and second, wo (same as the bias term b0) is calculated by using only 

the selected data points called support vectors (SVs). The fact that the summations in (18a) 

goes over all training data patterns (i.e., from 1 to l) is irrelevant because the Lagrange 

multipliers for all non-support vectors equal zero (�oi = 0, i = NSV + 1, l). Finally, having 

calculated wo and bo we obtain a decision hyperplane d(x) and an indicator function iF = o 

= sign(d(x)) as given below 

 

d(x) =
1 1

l l T
oi i o i i i oi i

w x b y b�
� �

� � �� � x x ,  iF = o = sign(d(x)). (19) 
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Training data patterns having non-zero Lagrange multipliers are called support vectors. 

For linearly separable training data, all support vectors lie on the margin and they are gen-

erally just a small portion of all training data (typically, NSV << l). Figs 6, 7 and 8 show the 

geometry of standard results for non-overlapping classes.  

Before presenting applications of OCSH for both overlapping classes and classes hav-

ing nonlinear decision boundaries, we will comment only on whether and how SV based 

linear classifiers actually implement the SRM principle. The more detailed presentation of 

this important property can be found in (Kecman, 2001; Schölkopf and Smola 2002)). 

First, it can be shown that an increase in margin reduces the number of points that can be 

shattered i.e., the increase in margin reduces the VC dimension, and this leads to the de-

crease of the SVM capacity. In short, by minimizing ||w|| (i.e., maximizing the margin) the 

SV machine training actually minimizes the VC dimension and consequently a generaliza-

tion error (expected risk) at the same time. This is achieved by imposing a structure on the 

set of canonical hyperplanes and then, during the training, by choosing the one with a 

minimal VC dimension. A structure on the set of canonical hyperplanes is introduced by 

considering various hyperplanes having different ||w||. In other words, we analyze sets SA 

such that ||w|| � A. Then, if A1 � A2 � A3 � . . . � An, we introduced a nested set SA1 � SA2 � 

SA3 � . . . � SAn. Thus, if we impose the constraint ||w|| � A, then the canonical hyperplane 

cannot be closer than 1/A to any of the training points xi. Vapnik in (Vapnik, 1995) states 

that the VC dimension h of a set of canonical hyperplanes in � n such that ||w|| � A is 

 

H � min[R2A2, n] + 1, (20) 
 

where all the training data points (vectors) are enclosed by a sphere of the smallest radius 

R. Therefore, a small ||w|| results in a small h, and minimization of ||w|| is an implementa-

tion of the SRM principle. In other words, a minimization of the canonical hyperplane 

weight norm ||w|| minimizes the VC dimension according to (20). See also Fig 4 that 

shows how the estimation error, meaning the expected risk (because the empirical risk, due 

to the linear separability, equals zero) decreases with a decrease of a VC dimension. Fi-

nally, there is an interesting, simple and powerful result (Vapnik, 1995) connecting the 

generalization ability of learning machines and the number of support vectors. Once the 

support vectors have been found, we can calculate the bound on the expected probability 

of committing an error on a test example as follows 

 

El[P(error)] 
[number of support vectors]E

l
� , (21) 

 

where El denotes expectation over all training data sets of size l. Note how easy it is to es-

timate this bound that is independent of the dimensionality of the input space. Therefore, 

an SV machine having a small number of support vectors will have good generalization 

ability even in a very high-dimensional space. 
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Example below shows the SVM’s learning of the weights for a simple separable data prob-

lem in both the primal and the dual domain. The small number and low dimensionality of 

data pairs is used in order to show the optimization steps analytically and graphically. The 

same reasoning will be in the case of high dimensional and large training data sets but for 

them, one has to rely on computers and the insight in solution steps is necessarily lost. 
 

Example: Consider a design of SVM classifier for 3 data shown in Fig 9 below.  

 

 

 

 

 

 

 

 

Figure 9 Left: Solving SVM classifier for 3 data shown. SVs are star data. Right: Solution space w-b 

First we solve the problem in the primal domain: From the constraints (10b) it follows 

2 1 , ( )

1 , ( )

1. ( )

w b a

w b b

b c
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�

 

The three straight lines corresponding to the equalities above are shown in Fig 9 right. The 

textured area is a feasible domain for the weight w and bias b. Note that the area is not de-

fined by the inequality (a), thus pointing to the fact that the point -1 is not a support vector. 

Points -1 and 0 define the textured area and they will be the supporting data for our deci-

sion function. The task is to minimize (10a), and this will be achieved by taking the value 

w = 2. Then, from (b), it follows that b = 1. Note that (a) must not be used for the calcula-

tion of the bias term b. 

 Because both the cost function (10a) and the constraints (10b) are convex, the primal 

and the dual solution must produce same w and b. Dual solution follows from maximizing 

(15) subject to (16) as follows 

1

1 2 3 1 2 3 2

3

1 2 3

1 2 3

4 2 0
1

[ ] 2 1 0 ,
2

0 0 0

s.t. - 0,

0, 0, 0,

dL
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� � � � � � �
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� � �

� � �

 �  �
� � � �� � � � � � � �
� � � �� � � �

� � �

� � �

 

The dual Lagrangian is obtained in terms of 1�  and 2�  after expressing 3�  from the 

equality constraint and it is given as 2 2
1 2 1 1 2 22 2 0.5(4 4 )dL � � � � � �� � � � � . Ld will have 

maximum for 1� = 0, and it follows that we have to find the maximum of 
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2
2 22 0.5dL � �� � which will be at 2 2.� �  Note that the Hessian matrix is extremely bad 

conditioned and if the QP problem is to be solved by computer H should be regularized 

first. From the equality constraint it follows that 3 2� �  too. Now, we can calculate the 

weight vector w and the bias b from (18a) and (18b) as follows,  
3

1

0( 1)( 2) 2( 1)( 1) 2(1)0 2i i i
i

w y�
�

� � � � � � � � �� x  

The bias can be calculated by using SVs only, meaning from either point -1 or point 0. 

Both result in same value as shown below 
 

1 2( 1) 1, or 1 2(0) 1b b� � � � � � � � . 

2.2 Linear Soft Margin Classifier for Overlapping Classes 

The learning procedure presented above is valid for linearly separable data, meaning for 

training data sets without overlapping. Such problems are rare in practice. At the same 

time, there are many instances when linear separating hyperplanes can be good solutions 

even when data are overlapped (e.g., normally distributed classes having the same covari-

ance matrices have a linear separation boundary). However, quadratic programming solu-

tions as given above cannot be used in the case of overlapping because the constraints 

yi[w
Txi + b] � 1, i = 1, l given by (10b) cannot be satisfied. In the case of an overlapping 

(see Fig 10), the overlapped data points cannot be correctly classified and for any misclas-

sified training data point xi, the corresponding �i will tend to infinity. This particular data 

point (by increasing the corresponding �i value) attempts to exert a stronger influence on 

the decision boundary in order to be classified correctly. When the �i value reaches the 

maximal bound, it can no longer increase its effect, and the corresponding point will stay 

misclassified. In such a situation, the algorithm introduced above chooses (almost) all 

training data points as support vectors. To find a classifier with a maximal margin, the al-

gorithm presented in the section 2.1 above, must be changed allowing some data to be un-

classified. Better to say, we must leave some data on the ‘wrong’ side of a decision bound-

ary. In practice, we allow a soft margin and all data inside this margin (whether on the 

correct side of the separating line or on the wrong one) are neglected. The width of a soft 

margin can be controlled by a corresponding penalty parameter C (introduced below) that 

determines the trade-off between the training error and VC dimension of the model. 

The question now is how to measure the degree of misclassification and how to incor-

porate such a measure into the hard margin learning algorithm given by equations (10). 

The simplest method would be to form the following learning problem 

 

minimize    
1

2
wTw + C(number of misclassified data), (22) 
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where C is a penalty parameter, trading off the margin size (defined by ||w||, i.e., by wTw) 

for the number of misclassified data points. Large C leads to small number of misclassifi-

cations, bigger wTw and consequently to the smaller margin and vice versa. Obviously tak-

ing C = ���������	�
��
�
��������������	���		��������
���	������������
�����	����������r-

lapping this is not possible. Hence, the problem may be feasible only for some value C < 

�� 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 The soft decision boundary for a dichotomization problem with data overlapping. Separa-

tion line (solid), margins (dashed) and support vectors (textured training data points). ). 4 SVs in 

positive class (circles) and 3 SVs in negative class (squares). 2 misclassifications for positive class 

and 1 misclassification for negative class.  

However, the serious problem with (22) is that the error’s counting can’t be accommodated 

within the handy (meaning reliable, well understood and well developed) quadratic pro-

gramming approach. Also, the counting only can’t distinguish between huge (or disas-

trous) errors and close misses! The possible solution is to measure the distances �i of the 

points crossing the margin from the corresponding margin and trade their sum for the mar-

gin size as given below 

minimize 
1

2
wTw + C(sum of distances of the wrong side points), (23) 

 

In fact this is exactly how the problem of the data overlapping was solved in (Cortes, 1995; 

Cortes and Vapnik, 1995) - by generalizing the optimal ‘hard’ margin algorithm. They in-

troduced the nonnegative slack variables �i (i = 1, l) in the statement of the optimization 

problem for the overlapped data points. Now, instead of fulfilling (10a) and (10b), the 

separating hyperplane must satisfy 

 

minimize    
1

2
wTw + C

1

l

i
i

�
�

� , (24a) 
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subject to 

yi[w
Txi + b] � 1 - �i,  i = 1, l, �i � 0, (24b) 

i.e., subject to 

wTxi + b � +1 - �i, for yi = +1, �i � 0, (24c) 

wTxi + b � -1 + �i, for yi = -1, �i � 0,. (24d) 
 

Hence, for such a generalized optimal separating hyperplane, the functional to be mini-

mized comprises an extra term accounting the cost of overlapping errors. In fact the cost 

function (24a) can be even more general as given below 

 

minimize    
1

2
wTw + C

1

l
k
i

i

�
�

� , (24e) 

 

subject to same constraints. This is a convex programming problem that is usually solved 

only for k = 1 or k = 2, and such soft margin SVMs are dubbed L1 and L2 SVMs respec-

tively. By choosing exponent k = 1, neither slack variables �i nor their Lagrange multipli-

ers 	i appear in a dual Lagrangian Ld. Same as for a linearly separable problem presented 

previously, for L1 SVMs (k = 1) here, the solution to a quadratic programming problem 

(24), is given by the saddle point of the primal Lagrangian Lp( , , , ,bw ) shown below 

 

Lp( , , , ,bw ) = 

1

1
( )

2

l
T

i
i

C �
�

� ��w w
1 1

{ [ ] 1 }
l l

T
i i i i i i

i i

y b� � 	 �
� �

� � � �� �w x , for L1 SVM 
(25) 

 

where �i and 	i are the Lagrange multipliers. Again, we should find an optimal saddle 

point ( , , , ,o o o o obw ) because the Lagrangian Lp has to be minimized with respect to w, 

b and , and maximized with respect to nonnegative �i and 	i. As before, this problem can 

be solved in either a primal space or dual space (which is the space of Lagrange multipli-

ers �i and 	i.). Again, we consider a solution in a dual space as given below by using 
 

- standard conditions for an optimum of a constrained function 

 

1

0, i.e.,
l

o i i i
io

L
y�

�

�
� �

� �w x
w

, (26) 

1

0, i.e., 0
l

i i
io

L
y

b
�

�

�
� �

� � , (27) 

0, i.e., i i
io

L
C� 	

�
�

� � �
�

, (28) 

and the KKT complementarity conditions below,  

 



24      Vojislav Kecman 

�i{yi[w
Txi + b]-1 + �i}= 0, i = 1, l. (29a) 

i�i = (C - �i)�i = 0, i = 1, l. (29b) 
 

At the optimal solution, due to the KKT conditions (29), the last two terms in the primal 

Lagrangian Lp given by (25) vanish and the dual variables Lagrangian Ld( ), for L1 

SVM, is not a function of 	i . In fact, it is same as the hard margin classifier’s Ld given be-

fore and repeated here for the soft margin one,  

 

Ld( ) = 
1 , 1

1

2

l l
T

i i j i j i j
i i j

y y� � �
� �

�� � x x . (30) 

 

In order to find the optimal hyperplane, a dual Lagrangian Ld( ) has to be maximized with 

respect to nonnegative and (unlike before) smaller than or equal to C, �i. In other words 

with 

C � �i � 0, i = 1, l, (31a) 
 

and under the constraint (27), i.e., under  

 

1

0
l

i i
i

y�
�

�� . (31b) 

 

Thus, the final quadratic optimization problem is practically same as for the separable case 

the only difference being in the modified bounds of the Lagrange multipliers �i. The pen-

alty parameter C, which is now the upper bound on �i, is determined by the user. The se-

lection of a ‘good’ or ‘proper’ C is always done experimentally by using some cross-

validation technique. Note that in the previous linearly separable case, without data over-

lapping, this upper bound C = �. We can also readily change to the matrix notation of the 

problem above as in equations (17). Most important of all is that the learning problem is 

expressed only in terms of unknown Lagrange multipliers �i, and known inputs and out-

puts. Furthermore, optimization does not solely depend upon inputs xi which can be of a 

very high (inclusive of an infinite) dimension, but it depends upon a scalar product of input 

vectors xi. It is this property we will use in the next section where we design SV machines 

that can create nonlinear separation boundaries. Finally, expressions for both a decision 

function d(x) and an indicator function iF = sign(d(x)) for a soft margin classifier are same 

as for linearly separable classes and are also given by (19). 
 

From (29) follows that there are only three possible solutions for �i (see Fig 10) 
  

1. �i = 0, �i = 0, data point xi is correctly classified, 

2. C > �i > 0,  then, the two complementarity conditions must result result in 

yi[w
Txi + b]-1 + �i = 0, and �i = 0. Thus, yi[w

Txi + b] = 1 and xi is 

a support vector. The support vectors with C � �i � 0 are called 

unbounded or free support vectors. They lie on the two margins, 
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3. �i = C,  then, yi[w
Txi + b]-1 + �i = 0, and �i � 0, and xi is a support vector. 

The support vectors with �i = C are called bounded support  

vectors. They lie on the ‘wrong’ side of the margin. For 1 > �i � 0,  

xi is still correctly classified, and if �i � 1, xi is misclassified. 

For L2 SVM the second term in the cost function (24e) is quadratic, i.e., C 2

1

l

i
i

�
�

� , and this 

leads to changes in a dual optimization problem which is now,  

 

Ld( ) = 
1 , 1

1

2

l l
ijT

i i j i j i j
i i j

y y
C



� � �

� �

� �
� �� �

� �
� � x x , (32) 

subject to 

�i � 0,  i = 1, l, (33a) 

1

0
l

i i
i

y�
�

�� . (33b) 

 

where, ij = 1 for i = j, and it is zero otherwise. Note the change in Hessian matrix ele-

ments given by second terms in (32), as well as that there is no upper bound on �i. The de-

tailed analysis and comparisons of the L1 and L2 SVMs is presented in (Abe, 2004). Deri-

vation of (32) and (33) is given in the Appendix. We use the most popular L1 SVMs here, 

because they usually produce more sparse solutions, i.e., they create a decision function by 

using less SVs than the L2 SVMs. 

 

2.3 The Nonlinear Classifier 

The linear classifiers presented in two previous sections are very limited. Mostly, classes 

are not only overlapped but the genuine separation functions are nonlinear hypersurfaces. 

A nice and strong characteristic of the approach presented above is that it can be easily 

(and in a relatively straightforward manner) extended to create nonlinear decision bounda-

ries. The motivation for such an extension is that an SV machine that can create a nonlin-

ear decision hypersurface will be able to classify nonlinearly separable data. This will be 

achieved by considering a linear classifier in the so-called feature space that will be intro-

duced shortly. A very simple example of a need for designing nonlinear models is given in 

Fig 11 where the true separation boundary is quadratic. It is obvious that no errorless linear 

separating hyperplane can be found now. The best linear separation function shown as a 

dashed straight line would make six misclassifications (textured data points; 4 in the nega-

tive class and 2 in the positive one). Yet, if we use the nonlinear separation boundary we 

are able to separate two classes without any error. Generally, for n-dimensional input pat-
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terns, instead of a nonlinear curve, an SV machine will create a nonlinear separating 

hypersurface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 A nonlinear SVM without data overlapping. A true separation is a quadratic curve. The 

nonlinear separation line (solid), the linear one (dashed) and data points misclassified by the linear 

separation line (the textured training data points) are shown. There are 4 misclassified negative data 

and 2 misclassified positive ones. SVs are not shown. 

The basic idea in designing nonlinear SV machines is to map input vectors x � � n into 

vectors �(x) of a higher dimensional feature space F (where � represents mapping: � n � 

� f), and to solve a linear classification problem in this feature space 

 

x � � n �  �(x) = [�1(x)  �2(x) , . . ., �n(x)]T � � f, (34) 
 

A mapping �(x) is chosen in advance. i.e., it is a fixed function. Note that an input space 

(x-space) is spanned by components xi of an input vector x and a feature space F (�-space) 

is spanned by components �i(x) of a vector �(x). By performing such a mapping, we hope 

that in a �-space, our learning algorithm will be able to linearly separate images of x by 

applying the linear SVM formulation presented above. (In fact, it can be shown that for a 

whole class of mappings the linear separation in a feature space is always possible. Such 

mappings will correspond to the positive definite kernels that will be shown shortly). We 

also expect this approach to again lead to solving a quadratic optimization problem with 

similar constraints in a �-space. The solution for an indicator function iF(x) = sign(wT� 

(x) + b) = sign  !1
( ) ( )

l T
i i ii

y b�
�

�� � � , which is a linear classifier in a feature space, 

will create a nonlinear separating hypersurface in the original input space given by (35) be-

x2 

Class 1, y = +1 

Class 2, y = -1 
x1 

Points misclassified by  
linear separation bound-
ary are textured 

Nonlinear separation boundary 
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low. (Compare this solution with (19) and note the appearances of scalar products in both 

the original X-space and in the feature space F). 

The equation for an iF(x) just given above can be rewritten in a ‘neural networks’ form 

as follows 

 

iF(x) = sign  !1
( ) ( )

l T
i i ii

y b�
�

�� � �  

         = sign  !1
( , )

l

i i ii
y k b�

�

�� x x = sign  !1
( , )

l

i ii
v k b

�

�� x x  
(35) 

 

where vi corresponds to the output layer weights of the ‘SVM’s network’ and k(xi, x) de-

notes the value of the kernel function that will be introduced shortly. (vi equals yi�i in the 

classification case presented above and it is equal to (�i - �i
*) in the regression problems). 

Note the difference between the weight vector w which norm should be minimized and 

which is the vector of the same dimension as the feature space vector �(x) and the weight-

ings vi = �iyi that are scalar values composing the weight vector v which dimension equals 

the number of training data points  l. The (l - NSVs) of vi components are equal to zero, and 

only NSVs entries of v are nonzero elements. 

A simple example below (Fig 12) should exemplify the idea of a nonlinear mapping to 

(usually) higher dimensional space and how it happens that the data become linearly sepa-

rable in the F-space. 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 A nonlinear 1-dimensional classification problem. One possible solution is given by the 

decision function d(x) (solid curve) i.e., by the corresponding indicator function defined as iF = 

sign(d(x)) (dashed stepwise function). 

Consider solving the simplest 1-D classification problem given the input and the output 

(desired) values as follows: x = [-1  0  1]T and d = y = [-1  1  -1]T. Here we choose the fol-

lowing mapping to the feature space: �(x) = [ 1(x)  2(x)  3 (x)]T = [x2   2 x   1]T. The 

mapping produces the following three points in the feature space (shown as the rows of the 

matrix F (F standing for features)) 
 

x3 = 1 x2 = 0 x1 = -1 x 

d 

-1 

1 

d(x) 
iF(x) 
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1 2 1

0 0 1

1 2 1

 ��
� �

� � �
� �
� �

F  

 

 

These three points are linearly separable by the plane 3(x) = 2 1(x) in a feature space as 

shown in Fig 13. It is easy to show that the mapping obtained by �(x) = [x2   2 x   1]T is a 

scalar product implementation of a quadratic kernel function 1 ( ,T
i j i jk� �2(x x ) x x ) . In 

other words, �T(xi) �(xj) = ( ,i jk x x ) . This equality will be introduced shortly.  

 

 

Figure 13 The three data points of a problem in Fig 12 are linearly separable n the feature space (ob-

tained by the mapping �(x) = [ 1(x)  2(x)  3 (x)]T = [x2   2 x   1]T). The separation boundary is 

given as the plane 3(x) = 2 1(x) shown in the figure. 

 

There are two basic problems when mapping an input x-space into higher order F-space:  

 

i) the choice of mapping �(x) that should result in a ‘rich’ class of decision hypersur-

faces, 

ii) the calculation of the scalar product �T(x) �(x) that can be computationally very 

discouraging if the number of features f (i.e., dimensionality f of a feature space) is very 

large. 
 

The second problem is connected with a phenomenon called the ‘curse of dimensionality’. 

For example, to construct a decision surface corresponding to a polynomial of degree two 

in an n-D input space, a dimensionality of a feature space f = n(n + 3)/2. In other words, a 

feature space is spanned by f coordinates of the form 

x2 2x  

Const 1 

3-D feature space 

3 [1 2 1]Tx �

2 [0 0 1]Tx �
1 [1 2 1]Tx � �
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z1 = x1, …, zn = xn (n coordinates), zn+1 = (x1)
2, …, z2n = (xn)

2 (next n coordinates), z2n+1 

= x1x2,…, zf = xnxn-1 (n(n-1)/2 coordinates), 
 

and the separating hyperplane created in this space, is a second-degree polynomial in the 

input space (Vapnik, 1998). Thus, constructing a polynomial of degree two only, in a 256-

dimensional input space, leads to a dimensionality of a feature space f = 33,152. Perform-

ing a scalar product operation with vectors of such, or higher, dimensions, is not a cheap 

computational task. The problems become serious (and fortunately only seemingly unsolv-

able) if we want to construct a polynomial of degree 4 or 5 in the same 256-dimensional 

space leading to the construction of a decision hyperplane in a billion-dimensional feature 

space.  

This explosion in dimensionality can be avoided by noticing that in the quadratic opti-

mization problem given by (15) and (30), as well as in the final expression for a classifier, 

training data only appear in the form of scalar products xi
Txj. These products will be re-

placed by scalar products �T(x)�(x)i = [�1(x), �2(x), . . ., �n(x)]T [�1(xi), �2(xi), . . ., �n(xi)] 

in a feature space F, and the latter can be and will be expressed by using the kernel func-

tion K(xi, xj) = �T(xi)�(xj). 

Note that a kernel function K(xi, xj) is a function in input space. Thus, the basic advan-

tage in using kernel function K(xi, xj) is in avoiding performing a mapping �(x) et all. In-

stead, the required scalar products in a feature space �T(xi)�(xj), are calculated directly by 

computing kernels K(xi, xj) for given training data vectors in an input space. In this way, 

we bypass a possibly extremely high dimensionality of a feature space F. Thus, by using 

the chosen kernel K(xi, xj), we can construct an SVM that operates in an infinite dimen-

sional space (such a kernel function is a Gaussian kernel function given in table 2 below). 

In addition, as will be shown below, by applying kernels we do not even have to know 

what the actual mapping �(x) is. A kernel is a function K such that  
 

K(xi, xj) = �T(xi)�(xj). (36) 
 

There are many possible kernels, and the most popular ones are given in table 2. All of 

them should fulfill the so-called Mercer’s conditions. The Mercer’s kernels belong to a set 

of reproducing kernels. For further details see (Mercer, 1909; Aizerman et al, 1964; Smola 

and Schölkopf, 1997; Vapnik, 1998; Kecman 2001). 

The simplest is a linear kernel defined as K(xi, xj) = xi
Txj . Below we show a few more ker-

nels:  

 

POYNOMIAL KERNELS: 
 

Let x � � 2 i.e., x=[x1 x2]
T, and if we choose �(x) =[ x1

2  2 x1x2  x1
2]T (i.e., there is an � 2 

� � 3 mapping), then the dot product  
 

�T(xi)�(xj) = [xi1
2  2 x i1x i2  x i1

2] [xj1
2  2 x j1x j2  x j1

2]T  

      = [xi1
2 xj1

2 + 2 xi1xi2 xj1xi2 + xi2
2 xj2

2] = (xi
T xj)

2 = K(xi, xj), or 
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K(xi, xj) = (xi
T xj)

2 = �T(xi)�(xj) 
 

Note that in order to calculate the scalar product in a feature space �T(xi)�(xj), we do not 

need to perform the mapping �(x) = [ x1
2  2 x1x2  x1

2]T et all. Instead, we calculate this 

product directly in the input space by computing (xi
Txj)

2 . This is very well known under 

the popular name of the kernel trick. Interestingly, note also that other mappings such as an  
 

� 2�� 3 mapping given by �(x) = [ x1
2 - x2

2    2x1x2    x1
2 + x2

2], or an  

� 2 � � 4  mapping given by �(x) = [x1
2    x1x2    x1x2    x2

2] 
 

also accomplish the same task as (xi
Txj)

2  

Now, assume the following mapping  
 

�(x) = [1    2 x1    2 x2    2 x1x2    x1
2    x2

2],  
 

i.e., there is an � 2 � � 5 mapping plus bias term as the constant 6th dimension’s value. 

Then the dot product in a feature space F is given as 
 

�T(xi)�(xj) = 1 + 2 xi1xj1 + 2xi2xj2 + 2 xi1xi2 xj1xi2 + xi1
2 xj1

2 + xi2
2 xj2

2  

                   = 1 + 2(xi
T xj) + (xi

T xj)
2 =  (xi

T xj + 1)2 = K(xi, xj), or 

      K(xi, xj) = (xi
T xj + 1)2 = �T(xi)�(xj) 

 

Thus, the last mapping leads to the second order complete polynomial. 

Many candidate functions can be applied to a convolution of an inner product (i.e., for 

kernel functions) K(x, xi) in an SV machine. Each of these functions constructs a different 

nonlinear decision hypersurface in an input space. In the first three rows, the table 2 shows 

the three most popular kernels in SVMs’ in use today, and the inverse multiquadrics one as 

an interesting and powerful kernel to be proven yet. 

 

Table 2. Popular Admissible Kernels 

 

 

 

 

 

 

 

 

 

 

Kernel functions Type of classifier 
K(x, xi) = (xTxi)  Linear, dot product, kernel, CPD 
K(x, xi) = [(xTxi) + 1]d    Complete polynomial of degree d, PD 

11[( ) ( )]
2( , )

T
i i

iK e
�

� � � �

�
x x x x

x x  Gaussian RBF, PD 

K(x, xi) = tanh[(xTxi) + b]* Multilayer perceptron, CPD 

2

1
( , )

|| ||
i

i

K
	

�
� �

x x
x x

 Inverse multiquadric function, PD 

*only for certain values of b, (C)PD = (conditionally) positive definite 
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The positive definite (PD) kernels are the kernels which Gramm matrix G (a.k.a. Gram-

mian) calculated by using all the l training data points is positive definite (meaning all its 

eigenvalues are strictly positive, i.e., �i > 0, i = 1, l) 
 

1 1 1 2 1

2 1 2 2 2

1 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )
( , )

( , ) ( , ) ( , )

l

l
i j

l l l l

k k k

k k k

k k k

 �
� �
� �� �
� �
� �
� �� �

x x x x x x

x x x x x x
G K x x

x x x x x x

�
�

� � � �
�

 (37) 

 

The kernel matrix G is a symmetric one. Even more, any symmetric positive definite ma-

trix can be regarded as a kernel matrix, that is - as an inner product matrix in some space. 

Finally, we arrive at the point of presenting the learning in nonlinear classifiers (in 

which we are ultimately interested here). The learning algorithm for a nonlinear SV ma-

chine (classifier) follows from the design of an optimal separating hyperplane in a feature 

space. This is the same procedure as the construction of a ‘hard’ (15) and ’soft’ (30) mar-

gin classifiers in an x-space previously. In a �(x)-space, the dual Lagrangian, given previ-

ously by (15) and (30), is now 
 

Ld( ) = 
1 , 1

1

2

l l
T

i i j i j i j
i i j

y y� � �
� �

�� � , (38) 

 

and, according to (36), by using chosen kernels, we should maximize the following dual 

Lagrangian 
 

Ld( ) = 
1 , 1

1
( , )

2

l l

i i j i j i j
i i j

y y K� � �
� �

�� � x x , (39) 

subject to 

�i � 0,  i = 1, l  and  
1

0
l

i i
i

y�
�

�� . (39a) 

 

In a more general case, because of a noise or due to generic class’ features, there will be an 

overlapping of training data points. Nothing but constraints for �i change. Thus, the 

nonlinear ‘soft’ margin classifier will be the solution of the quadratic optimization problem 

given by (39) subject to constraints 
 

C � �i � 0,  i = 1, l  and 
1

0
l

i i
i

y�
�

�� . (39b) 

 

Again, the only difference to the separable nonlinear classifier is the upper bound C on the 

Lagrange multipliers �i. In this way, we limit the influence of training data points that will 

remain on the ‘wrong’ side of a separating nonlinear hypersurface. After the dual variables 

are calculated, the decision hypersurface d(x) is determined by 
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1 1

( ) ( , ) ( , )
l l

i i i i i
i i

d y K b v K b�
� �

� � � �� �x x x x x , (40) 

 

and the indicator function is 
1

( ) sign[ ( )] sign ( , )
l

F i i
i

i d v K b
�

 �
� � �� �

� �
�x x x x . 

Note that the summation is not actually performed over all training data but rather over 

the support vectors, because only for them do the Lagrange multipliers differ from zero. 

The existence and calculation of a bias b is now not a direct procedure as it is for a linear 

hyperplane. Depending upon the applied kernel, the bias b can be implicitly part of the 

kernel function. If, for example, Gaussian RBF is chosen as a kernel, it can use a bias term 

as the f + 1st feature in F-space with a constant output = +1, but not necessarily. In short, 

all PD kernels do not necessarily need an explicit bias term b, but b can be used. (More on 

this can be found in (Kecman, Huang, and Vogt, 2004) as well as in the (Vogt and 

Kecman, 2004). Same as for the linear SVM, (39) can be written in a matrix notation as 
 

maximize 

Ld( ) = 0.5 T T� �� � , (41a) 

subject to 

yT = 0,   (41b)              and            C � �i � 0,  i = 1, l, (41c) 
 

where =[�1, �2, . . ., �l]
T, H denotes the Hessian matrix ( Hij = yiyjK(xi, xj)) of this prob-

lem and f is an (l, 1) unit vector f = 1 = [1 1 . . . 1]T. Note that if K(xi, xj) is the positive 

definite matrix, then so is the matrix yiyjK(xi, xj) too. 

The following 1-D example (just for the sake of graphical presentation) will show the 

creation of a linear decision function in a feature space and a corresponding nonlinear 

(quadratic) decision function in an input space. 

Suppose we have 4 1-D data points given as x1 = 1, x2 = 2, x3 = 5, x4 = 6, with data at 1, 

2, and 6 as class 1 and the data point at 5 as class 2, i.e., y1 = -1, y2 = -1, y3 = 1, y4 = -1. We 

use the polynomial kernel of degree 2,  K(x, y) = (xy + 1)2. C is set to 50, which is of lesser 

importance because the constraints will be not imposed in this example for maximal value 

for the dual variables alpha will be smaller than C = 50. 

 

 

Case 1: Working with a bias term b as given in (40). 
 
 

We first find �i (i =1, …, 4) by solving dual problem (41) having a Hessian matrix  

 4            9          -36          49

 9            25        -121         169

-36        -121        676        -961

 49          169       -961        1369

 �
� �
� ��
� �
� �
� �� �

H  
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Alphas are "1 = 0,    "2 = 2.499999, "3 = 7.333333   "4 = 4.833333 and the bias b will be 

found by using (18b), or by fulfilling the requirements that the values of a decision func-

tion at the support vectors should be the given yi. The model (decision function) is given 

by 
 

4 4
2

1 1

( ) ( , ) ( 1)i i i i i
i i

d x y K x x b v xx b�
� �

� � � � �� � , or by 

 

d(x) = 2.499999(-1)(2x + 1)2 + 7.333333(1)(5x + 1)2 + 4.833333(-1)(6x + 1)2 + b  
 

d(x) = -0.666667x2 + 5.333333x + b 
 

Bias b is determined from the requirement that at the SV points 2, 5 and 6, the outputs 

must be -1, 1 and -1 respectively. Hence, b = -9, resulting in the decision function 

 

d(x) = -0.666667x2 + 5.333333x – 9. 
 

The nonlinear (quadratic) decision function and the indicator one are shown in Fig 14. 
Note that in calculations above 6 decimal places have been used for alpha values. The cal-
culation is numerically very sensitive, and working with fewer decimals can give very ap-
proximate or wrong results. 

The complete polynomial kernel as used in the case 1, is positive definite and there is 

no need to use an explicit bias term b as presented above. Thus, one can use the same sec-

ond order polynomial model without the bias term b. Note that in this particular case there 

is no equality constraint equation that originates from an equalization of the primal La-

grangian derivative in respect to the bias term b to zero. Hence, we do not use (41b) while 

using a positive definite kernel without bias as it will be shown below in the case 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 The nonlinear decision function (solid) and the indicator function (dashed) for 1-D over-
lapping data. By using a complete second order polynomial the model with and without a bias term b 
are same. 

NL SV classification. 1D input. Polynomial, quadratic, kernel used 

              1           2                                   5           6 

1 
 
 
 
 
-1 

y, d 

x 
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Case 2: Working without a bias term b 
 

 

Because we use the same second order polynomial kernel, the Hessian matrix H is same as 

in the case 1. The solution without the equality constraint for alphas is: "1 = 0,    "2 = 

24.999999, "3 = 43.333333, "4 = 27.333333. The model (decision function) is given by 
4 4

2

1 1

( ) ( , ) ( 1)i i i i i
i i

d x y K x x v xx�
� �

� � �� � , or by 

d(x) = 24.99999(-1)(2x + 1)2 + 43.333333(1)(5x + 1)2 + 27.333333 (-1)(6x + 1)2  

d(x) = -0.666667x2 + 5.333333x – 9. 
 

Thus the nonlinear (quadratic) decision function and consequently the indicator function in 

the two particular cases are equal. 

 

 

 

XOR Example: 

In the next example shown by Figs 14 and 15 we present all the important mathematical 

objects of a nonlinear SV classifier by using a classic XOR (exclusive-or) problem. The 

graphs show all the mathematical functions (objects) involved in a nonlinear classification. 

Namely, the nonlinear decision function d(x), the NL indicator function iF(x), training data 

(xi), support vectors (xSV)i and separation boundaries.  

The same objects will be created in the cases when the input vector x is of a dimension-

ality n > 2, but the visualization in these cases is not possible. In such cases one talks about 

the decision hyperfunction (hypersurface) d(x), indicator hyperfunction (hypersurface) 

iF(x), training data (xi), support vectors (xSV)i and separation hyperboundaries (hypersur-

faces). 

 Note the different character of a d(x), iF(x) and separation boundaries in the two graphs 

given below. However, in both graphs all the data are correctly classified.  

The analytic solution to the Fig 16 for the second order polynomial kernel (i.e., for 

(xi
Txj + 1)2 = �T(xi)�(xj), where �(x) = [1    2 x1    2 x2    2 x1x2    x1

2    x2
2], no ex-

plicit bias and C = �) goes as follows. Inputs and desired outputs are, 

0 1 1 0
,

0 1 0 1

T
 �

� � �
� �

x y = # $1 1 1 1
T� � �d . The dual Lagrangian (39) has the Hessian 

matrix  

1     1    -1    -1

1     9    -4    -4

-1    -4     4     1

-1    -4     1     4

 �
� �
� ��
� �
� �
� �� �

H  
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Figure 15 XOR problem. Kernel functions (2-D Gaussians) are not shown. The nonlinear decision 

function, the nonlinear indicator function and the separation boundaries are shown. All four data are 

chosen as support vectors. 

. 
 
 
 

 

Input  x1 

Input  x2 

  Decision and indicator function of a NL SVM 

Separation 
boundaries 

Input plane 

Hyperbolic separation boundaries 

Figure 16 XOR problem. Kernel function is a 2-D polynomial. The nonlinear decision function, the 
nonlinear indicator function and the separation boundaries are shown. All four data are support vectors. 

x1 

x2 

Decision and indicator function of a nonlinear SVM 

x1 

x2 
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The optimal solution can be obtained by taking the derivative of Ld with respect to dual 

variables �i (i = 1, 4) and by solving the resulting linear system of equations taking into 

account the constraints, see (Kecman, Huang, and Vogt, 2004). The solution to 
 

 "1   +    "2   -    "3   -     "4   =  1, 

 "1   +   9"2  -  4"3   -   4"4   =  1, 

-"1   -   4"2  +  4"3  +     "4   =  1, 

-"1   -   4"2  +    "3  +    4"4  =  1, 
 

subject to �i > 0, (i = 1, 4), is �1 = 4.3333, �2 = 2.0000, �3 = 2.6667 and �4 = 2.6667. The 

decision function in a 3-D space is  
 

d(x) = 
4

1
( ) ( )T

i i ii
y�

�

� � � =   

# $(4.3333 1 0 0 0 0 0 2 1 2 2 2 1 1

2.6667 1 2 0 0 1 0 2.6667 1 0 2 0 0 1 ) ( )

 �� � �� �
 �  ��� � � � �

# $ 2 2
1 2 1 2 1 21 -0.9429 -0.9429 2.8284 -0.6667 -0.6667 [1  2   2   2     ]Tx x x x x x� , 

 

and finally 
 

d(x) = 1 - 1.3335x1 - 1.3335 x2 +  4x1x2 - 0.6667 x1
2 - 0.6667x2

2 
 

 

It is easy to check that the values of d(x) for all the training inputs in x equal the desired 

values in d. The d(x) is the saddle-like function shown in Fig 16. 

Here we have shown the derivation of an expression for d(x) by using explicitly a map-

ping �. Again, we do not have to know what mapping � is at all. By using kernels in input 

space, we calculate a scalar product required in a (possibly high dimensional) feature 

space and we avoid mapping �(x). This is known as kernel ‘trick’. It can also be useful to 

remember that the way in which the kernel ‘trick’ was applied in designing an SVM can be 

utilized in all other algorithms that depend on the scalar product (e.g., in principal compo-

nent analysis or in the nearest neighbor procedure). 

2.4 Regression by Support Vector Machines 

In the regression, we estimate the functional dependence of the dependent (output) variable 

y �  on an n-dimensional input variable x. Thus, unlike in pattern recognition problems 

(where the desired outputs yi are discrete values e.g., Boolean) we deal with real valued 

functions and we model an  n to  1 mapping here. Same as in the case of classification, 

this will be achieved by training the SVM model on a training data set first. Interestingly 

and importantly, a learning stage will end in the same shape of a dual Lagrangian as in 
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classification, only difference being in a dimensionalities of the Hessian matrix and corre-

sponding vectors which are of a double size now e.g., H is a (2l, 2l) matrix.  

Initially developed for solving classification problems, SV techniques can be success-

fully applied in regression, i.e., for a functional approximation problems (Drucker et al, 

(1997), Vapnik et al, (1997)). The general regression learning problem is set as follows – 

the learning machine is given l training data from which it attempts to learn the input-

output relationship (dependency, mapping or function) f(x). A training data set D = {[x(i), 

y(i)] �  n � , i = 1,...,l} consists of l pairs (x1, y1), (x2, y2), …, (xl, yl), where the inputs x 

are n-dimensional vectors x �  n and system responses y � , are continuous values.  

We introduce all the relevant and necessary concepts of SVM’s regression in a gentle 

way starting again with a linear regression hyperplane f(x, w) given as  

 

f(x, w) = wTx + b. (42) 
 

In the case of SVM’s regression, we measure the error of approximation instead of the 

margin used in classification. The most important difference in respect to classic regres-

sion is that we use a novel loss (error) functions here. This is the Vapnik’s linear loss func-

tion with �-insensitivity zone defined as 
 

E(x, y, f) =
0 if |  - ( , ) |

|  - ( , ) |
|  - ( , ) | - , otherwise.

y f
y f

y f�

�
�

��
�	




x w
x w

x w
, (43a) 

or as, 

 

e(x, y, f) = max(0,|  - ( , ) | - )y f �x w . (43b) 
 

Thus, the loss is equal to 0 if the difference between the predicted f(xi, w) and the 

measured value yi is less than �. Vapnik’s �-insensitivity loss function (43) defines an � 
tube (Fig 18). If the predicted value is within the tube the loss (error or cost) is zero. For all 

other predicted points outside the tube, the loss equals the magnitude of the difference be-

tween the predicted value and the radius � of the tube. 

 

 

 

 

 

 

 

 

 

Figure 17 Loss (error) functions. 

a) quadratic (L2 norm)   b) absolute error      c) �-insensitivity  
 and Huber’s (dashed)      (least modulus, L1 norm) 

 e                e               e 

� 

 

y - f(x, w)         y - f(x, w)          y - f(x, w) 
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The two classic error functions are: a square error, i.e., L2 norm (y – f)2, as well as an abso-

lute error, i.e., L1 norm, least modulus | y – f | introduced by Yugoslav scientist Rudjer 

Boskovic in 18th century (Eisenhart, 1962). The latter error function is related to Huber’s 

error function. An application of Huber’s error function results in a robust regression. It is 

the most reliable technique if nothing specific is known about the model of a noise. We do 

no present Huber’s loss function here in analytic form. Instead, we show it by a dashed 

curve in Fig 17a. In addition, Fig 17 shows typical shapes of all mentioned error (loss) 

functions above. 

Note that for � = 0, Vapnik’s loss function equals a least modulus function. Typical 

graph of a (nonlinear) regression problem as well as all relevant mathematical variables 

and objects required in, or resulted from, a learning unknown coefficients wi are shown in 

Fig 18. 

We will formulate an SVM regression’s algorithm for the linear case first and then, for 

the sake of a NL model design, we will apply mapping to a feature space, utilize the kernel 

‘trick’ and construct a nonlinear regression hypersurface. This is actually the same order of 

presentation as in classification tasks. Here, for the regression, we ‘measure’ the empirical 

error term Remp by Vapnik’s �-insensitivity loss function given by (43) and shown in Fig 

17c (while the minimization of the confidence term � will be realized through a minimiza-

tion of wTw again). The empirical risk is given as 
 

1

1
( , )

l T
i iiempR b y b

l
�

��

� � ��w w x , 
 

(44) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 The parameters used in (1-D) support vector regression Filled squares data       are support 

vectors, and the empty      ones are not. Hence, SVs can appear only on the tube boundary or outside 

the tube. 
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 y    f(x, w) 

Predicted f(x, w) 
solid line � 

� 

Measured value 
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�j
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Fig 19 shows two linear approximating functions as dashed lines inside an �-tube having 

the same empirical risk Remp
�  as the regression function f(x, w) on the training data. 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 Two linear approximations inside an � tube (dashed lines) have the same empirical risk 

empR�  on the training data as the regression function (solid line). 

As in classification, we try to minimize both the empirical risk empR�  and || w ||2 simultane-

ously. Thus, we construct a linear regression hyperplane f(x, w) = wTx + b by minimizing 
 

2

1

1
|| || | ( , ) |

2

l

i ii
R C y f

��

� � ��w x w . (45) 

 

Note that the last expression resembles the ridge regression scheme. However, we use 

Vapnik’s �-insensitivity loss function instead of a squared error now. From (43) and Fig 18 

it follows that for all training data outside an �-tube, 
 

| y – f(x, w) | - � = �    for data ‘above’ an �-tube, or  

| y – f(x, w) | - � = �*   for data ‘below’ an �-tube.  
 

Thus, minimizing the risk R above equals the minimization of the following risk  
 

 !*
*2

1 1, ,

1
|| ||

2

l l

i ii i
R C

� �
� �

� �

 �� � �� �� �
� �w

w , (46) 

 

under constraints 
 

yi – wTxi – b � � + �i,     i = 1, l, (47a) 

wTxi + b - yi � � + �i
*,   i = 1, l, (47b) 

�i   �  0,   �i
* �  0,           i = 1, l. (47c) 

 

where �i and �i
* are slack variables shown in Fig 18 for measurements ‘above’ and ‘below’ 

an �-tube respectively. Both slack variables are positive values. Lagrange multipliers �i 

Two approximating functions hav-
ing the same empirical risk as the 
regression function f(x, w). 

x 

 y     f(x, w) 

Regression function 
f(x, w), solid line 

� tube 

Measured training data 
points 
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and �i
* (that will be introduced during the minimization below) related to the first two sets 

of inequalities above, will be nonzero values for training points ‘above’ and ‘below’ an �-

tube respectively. Because no training data can be on both sides of the tube, either �i or �i
* 

will be nonzero. For data points inside the tube, both multipliers will be equal to zero. 

Thus �i �i
* = 0. 

Note also that the constant C that influences a trade-off between an approximation error 

and the weight vector norm ||w|| is a design parameter that is chosen by the user. An in-

crease in C penalizes larger errors i.e., it forces �i and �i
* to be small. This leads to an ap-

proximation error decrease which is achieved only by increasing the weight vector norm 

||w||. However, an increase in ||w|| increases the confidence term � and does not guarantee 

a small generalization performance of a model. Another design parameter which is chosen 

by the user is the required precision embodied in an � value that defines the size of an �-

tube. The choice of � value is easier than the choice of C and it is given as either maxi-

mally allowed or some given or desired percentage of the output values yi (say, � = 0.1 of 

the mean value of y). 

Similar to procedures applied in the SV classifiers’ design, we solve the constrained 

optimization problem above by forming a primal variables Lagrangian as follows, 
 

* ** * * *

1 1

1
( , , , , , , , ) ( ) ( )

2

l lT
p i i i i i i i i i i i ii i

L b C� � � � 	 	 � � 	 � 	 �
� �

� � � � �� �w w w  

                  T * T *

1 1
+ - -

l l

i i i i i i i ii i
b y y b� � � � � �

� �

 �  �� � � � � � �� � � �� �w x w x . 

(48) 

 

A primal variables Lagrangian Lp(w, b, �i, � i
*, � i, � i

*, 	 i, 	 i
*) has to be minimized with 

respect to primal variables w, b, � i and � i
* and maximized with respect to nonnegative La-

grange multipliers �, � i
*, 	 and 	 i

*. Hence, the function has the saddle point at the optimal 

solution (wo, bo, � io,  � io
* ) to the original problem. At the optimal solution the partial de-

rivatives of Lp in respect to primal variables vanishes. Namely,  
 

* * *
*

1

( , , , , , , , )
( ) 0,

lp o o io io i i i i
o i i ii

L b � � � � 	 	
� �

�

�
� � � �

� �
w

w x
w

 (49) 

 

* * *
*

1

( , , , , , , , )
( ) 0,

lp o o io io i i i i
i ii

L b

b

� � � � 	 	
� �

�

�
� � �

� �
w

 (50) 

 

* * *( , , , , , , , )
0,p o o io io i i i i

i i
i

L b
C

� � � � 	 	
� 	

�

�
� � � �

�

w
 (51) 

 

* * *
* *

*

( , , , , , , , )
0.p o o io io i i i i

i i
i

L b
C

� � � � 	 	
� 	

�

�
� � � �

�

w
 (52) 
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Substituting the KKT above into the primal Lp given in (48), we arrive at the problem of 

the maximization of a dual variables Lagrangian Ld(�, �*) below, 
 

* * * * *

, 1 1 1

* * *

, 1 1 1

1
( , ) ( )( ) ( ) ( )

2

1
( )( ) ( ) ( )

2

l l l
T

d i i i i j j i j i i i i i
i j i i

l l l
T

i i j j i j i i i i
i j i i

L y

y y

� � � � � � � � � � �

� � � � � � � �

� � �

� � �

� � � � � � � �

� � � � � � � �

� � �

� � �

x x

x x

 (53) 

 

subject to constraints 

 

 !* *

1 1 1
or  0

l l l

i i i ii i i
� � � �

� � �

� � �� � �  (54a) 

0 � �i � C  i = 1, l, (54b) 

0 � � i
* � C  i = 1, l. (54c) 

 

Note that the dual variables Lagrangian Ld(
*, ) is expressed in terms of Lagrange multi-

pliers �i and �i
* only. However, the size of the problem, with respect to the size of an SV 

classifier design task, is doubled now. There are 2l unknown dual variables (l �i-s and l 

�i
*-s) for a linear regression and the Hessian matrix H of the quadratic optimization prob-

lem in the case of regression is a (2l, 2l) matrix. The standard quadratic optimization 

problem above can be expressed in a matrix notation and formulated as follows: 
 

minimize Ld( ) = 0.5 T T�� � , (55) 
 

subject to (54) where %�%#�1,  �2, . . ., �l,  �1
*,  �2

*, . . . , � l
*]T& H = [G   -G; -G   G], G is 

an (l, l) matrix with entries Gij = [xi
Txj] for a linear regression, and f = [� - y1,  � - y2, . . ., � - 

yl,  � + y1,  � + y2, . . . , � + yl]
T. (Note that Gij, as given above, is a badly conditioned ma-

trix and we rather use Gij = [xi
Txj + 1] instead). Again, (55) is written in a form of some 

standard optimization routine that typically minimizes given objective function subject to 

same constraints (54). 

The learning stage results in l Lagrange multiplier pairs (�i, �i
*). After the learning, the 

number of nonzero parameters �i or �i
* is equal to the number of SVs. However, this num-

ber does not depend on the dimensionality of input space and this is particularly important 

when working in very high dimensional spaces. Because at least one element of each pair 

(�i, �i
*), i = 1, l, is zero, the product of �i and �i

* is always zero, i.e., �i�i
* = 0. 

At the optimal solution the following KKT complementarity conditions must be fulfilled  
 

 !T + 0i i i ib y� � �� � � �w x , (56) 

 !* T *- - 0i i i ib y� � �� � � �w x , (57) 

( ) 0i i i iC	 � � �� � � , (58) 

* * * *( ) 0i i i iC	 � � �� � � . (59) 
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(58) states that for 0 < �i < C, 0i� �  holds. Similarly, from (59) follows that for 0 < �i
* < 

C, * 0i� �  and, for 0 < �i , �i
*< C, from (56) and (57) follows,  

 

T + 0i ib y �� � �w x , (60) 

T- - 0i ib y �� � �w x . (61) 
 

Thus, for all the data points fulfilling y – f(x) = +� , dual variables �i must be between 0 

and C, or 0 < �i < C, and for the ones satisfying y – f(x) = -� , �i
* take on values 0 < �i

* < 

C. These data points are called the free (or unbounded) support vectors. They allow com-

puting the value of the bias term b as given below 
 

T
i ib y �� � �w x , for 0 < �i < C, (62a) 

T
i ib y �� � �w x , for 0 < �i

* < C. (62b) 
 

The calculation of a bias term b is numerically very sensitive, and it is better to compute 

the bias b by averaging over all the free support vector data points.  

The final observation follows from (58) and (59) and it tells that for all the data points 

outside the �-tube, i.e., when both 0i� '  and * 0i� ' , both �i and �i
* equal C, i.e.,�i = C 

for the points above the tube and �i
* = C for the points below it. These data are the so-

called bounded support vectors. Also, for all the training data points within the tube, or 

when | y – f(x) | < �, both �i and �i
* equal zero and they are neither the support vectors nor 

do they construct the decision function f(x). 

After calculation of Lagrange multipliers �i and �i
*, using (49) we can find an optimal 

(desired) weight vector of the regression hyperplane as 
 

wo = *

1
( )

l

i i ii
� �

�

�� x . (63) 

 

The best regression hyperplane obtained is given by 
 

f(x, w) = wo
Tx + b = *

1
( )

l T
i i ii

� �
�

�� x x + b. (64) 

 

More interesting, more common and the most challenging problem is to aim at solving the 

nonlinear regression tasks. A generalization to nonlinear regression is performed in the 

same way the nonlinear classifier is developed from the linear one, i.e., by carrying the 

mapping to the feature space, or by using kernel functions instead of performing the com-

plete mapping which is usually of extremely high (possibly of an infinite) dimension. Thus, 

the nonlinear regression function in an input space will be devised by considering a linear 

regression hyperplane in the feature space.  

We use the same basic idea in designing SV machines for creating a nonlinear regres-

sion function. First, a mapping of input vectors x � � n into vectors �(x) of a higher di-
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mensional feature space F (where � represents mapping: � n � � f ) takes place and then, 

we solve a linear regression problem in this feature space. A mapping �(x) is again the 

chosen in advance, or fixed, function. Note that an input space (x-space) is spanned by 

components xi of an input vector x and a feature space F (�-space) is spanned by compo-

nents �i(x) of a vector �(x). By performing such a mapping, we hope that in a �-space, 

our learning algorithm will be able to perform a linear regression hyperplane by applying 

the linear regression SVM formulation presented above. We also expect this approach to 

again lead to solving a quadratic optimization problem with inequality constraints in the 

feature space. The (linear in a feature space F) solution for the regression hyperplane f = 

wT�(x) + b, will create a nonlinear regressing hypersurface in the original input space. The 

most popular kernel functions are polynomials and RBF with Gaussian kernels. Both ker-

nels are given in Table 2. 

In the case of the nonlinear regression, the learning problem is again formulated as the 

maximization of a dual Lagrangian (55) with the Hessian matrix H structured in the same 

way as in a linear case, i.e. H = [G   -G; -G   G] but with the changed Grammian matrix G 

that is now given as  
 

11 1

1

l

ii

l ll

G G

G

G G

 �
� �� � �
� �� �

G

�
� �

�
, (65) 

 

where the entries   Gij = �T(xi)�(xj) = K(xi, xj), i, j = 1, l. 

After calculating Lagrange multiplier vectors  and *, we can find an optimal 

weighting vector of the kernels expansion as 
 

vo =  - *. (66) 
 

Note however the difference in respect to the linear regression where the expansion of a 

decision function is expressed by using the optimal weight vector wo. Here, in a NL 

SVMs’ regression, the optimal weight vector wo could often be of infinite dimension 

(which is the case if the Gaussian kernel is used). Consequently, we neither calculate wo 

nor we have to express it in a closed form. Instead, we create the best nonlinear regression 

function by using the weighting vector vo and the kernel (Grammian) matrix G as follows, 
 

f(x, w) = Gvo + b, (67) 
 

In fact, the last result follows from the very setting of the learning (optimizing) stage in a 

feature space where, in all the equations above from (47) to (64), we replace xi by the cor-

responding feature vector �(xi). This leads to the following changes:  
 

- instead Gij = xi
Txj we get Gij = �T(xi) �(xj) and, by using the kernel function K(xi, xj) 

= �T(xi) �(xj), it follows that Gij = K(xi, xj).  
 



44      Vojislav Kecman 

- similarly, (63) and (64) change as follows: 
 

wo = *

1
( ) ( )

l

i i ii
� �

�

�� � , and, (68) 

 

 

f(x, w) = wo
T�(x) + b = *

1
( ) ( )

l T
i i ii

� �
�

�� � �(x) + b 

= *

1
( ) ( , )

l

i i ii
K� �

�

�� x x + b 

(69) 

 

If the bias term b is explicitly used as in (67) then, for a NL SVMs’ regression, it can be 

calculated from the upper SVs as, 
 

*

1

*

1

( ) ( ) ( )

( ) ( , )

N freeupper SVs T
i j j j ij

N freeupper SVs

i j j i jj

b y

y K

� � �

� � �

�

�

� � � �

� � � �

�
�

� �

x x
, for 0 < �i < C, (70a) 

 

or from the lower ones as, 
 

*

1

*

1

( ) ( ) ( )

( ) ( , )

N free lower SVs T
i j j j ij

N free lower SVs

i j j i jj

b y

y K

� � �

� � �

�

�

� � � �

� � � �

�
�

� �

x x
, for 0 < �i

* < C. 

(70b) 

 

Note that �j
* = 0 in (70a) and so is �j = 0 in (70b). Again, it is much better to calculate the 

bias term b by an averaging over all the free support vector data points. 

There are a few learning parameters in constructing SV machines for regression. The 

three most relevant are the insensitivity zone �, the penalty parameter C (that determines 

the trade-off between the training error and VC dimension of the model), and the shape pa-

rameters of the kernel function (variances of a Gaussian kernel, order of the polynomial, or 

the shape parameters of the inverse multiquadrics kernel function). All three parameters’ 

sets should be selected by the user. To this end, the most popular method is a cross-

validation. Unlike in a classification, for not too noisy data (primarily without huge out-

liers), the penalty parameter C could be set to infinity and the modeling can be controlled 

by changing the insensitivity zone � and shape parameters only. 

The example below shows how an increase in an insensitivity zone � has smoothing ef-

fects on modeling highly noise polluted data. Increase in � means a reduction in require-

ments on the accuracy of approximation. It decreases the number of SVs leading to higher 

data compression too. This can be readily followed in the lines and Fig 20 below. 
 

Example: The task here is to construct an SV machine for modeling measured data pairs. 

The underlying function (known to us but, not to the SVM) is a sinus function multiplied 

by the square one (i.e., f(x) = x2sin(x)) and it is corrupted by 25% of normally distributed 

noise with a zero mean. Analyze the influence of an insensitivity zone � on modeling qual-

ity and on a compression of data, meaning on the number of SVs. 
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Fig (19) shows that for a very noisy data a decrease of an insensitivity zone � (i.e., shrink-

ing of the tube shown by dashed line) approximates the noisy data points more closely. 

The related more and more wiggly shape of the regression function can be achieved only 

by including more and more support vectors. However, being good on the noisy training 

data points easily leads to an overfitting. The cross-validation should help in finding cor-

rect � value, resulting in a regression function that filters the noise out but not the true de-

pendency and which, consequently, approximate the underlying function as close as possi-

ble. 

The approximation function shown in Fig 20 is created by 9 and 18 weighted Gaussian 
basis functions for � = 1 and � = 0.75 respectively. These supporting functions are not 
shown in the figure. However, the way how the learning algorithm selects SVs is an inter-
esting property of support vector machines and in Fig 21 we also present the supporting 
Gaussian functions.  

Note that the selected Gaussians lie in the dynamic area of the function in Fig 21. Here, 
these areas are close to both the left hand and the right hand boundary. In the middle, the 
original function is pretty flat and there is no need to cover this part by supporting Gaus-
sians. The learning algorithm realizes this fact and simply, it does not select any training 
data point in this area as a support vector. Note also that the Gaussians are not weighted in 
Fig 21, and they all have the peak value of 1. The standard deviation of Gaussians is cho-
sen in order to see Gaussian supporting functions better. Here, in Fig 21,  = 0.6. Such a 
choice is due the fact that for the larger  values the basis functions are rather flat and the 
supporting functions are covering the whole domain as the broad umbrellas. For very big 
variances one can’t distinguish them visually. Hence, one can’t see the true, bell shaped, 
basis functions for the large variances. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 20 The influence of an insensitivity zone � on the model performance. A nonlinear SVM 
creates a regression function f with Gaussian kernels and models a highly polluted (25% noise) 
function x2sin(x) (dotted). 31 training data points (plus signs) are used. Left: � = 1; 9 SVs are chosen 
(encircled plus signs). Right: � = 0.75; the 18 chosen SVs produced a better approximation to noisy 
data and, consequently, there is the tendency of overfitting. 
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Figure 21 Regression function f created as the sum of 8 weighted Gaussian kernels. A standard de-
viation of Gaussian bells  = 0.6. Original function (dashed line) is x2sin(x) and it is corrupted by . 
25% noise. 31 training data points are shown as plus signs. Data points selected as the SVs are encir-
cled. The 8 selected supporting Gaussian functions are centered at these data points.  

 
 

3 Implementation Issues 

In both the classification and the regression the learning problem boils down to solving the 

QP problem subject to the so-called ‘box-constraints and to the equality constraint in the 

case that a model with a bias term b is used. The SV training works almost perfectly for 

not too large data basis. However, when the number of data points is large (say l > 2,000) 

the QP problem becomes extremely difficult to solve with standard QP solvers and meth-

ods. For example, a classification training set of 50,000 examples amounts to a Hessian 

matrix H with 2.5*109 (2.5 billion) elements. Using an 8-byte floating-point representation 

we need 20,000 Megabytes = 20 Gigabytes of memory (Osuna et al, 1997). This cannot be 

easily fit into memory of present standard computers, and this is the single basic disadvan-

tage of the SVM method. There are three approaches that resolve the QP for large data 

sets. Vapnik in (Vapnik, 1995) proposed the chunking method that is the decomposition 
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approach. Another decomposition approach is suggested in (Osuna et al, 1997). The se-

quential minimal optimization (Platt, 1997) algorithm is of different character and it seems 

to be an ‘error back propagation’ for an SVM learning. A systematic exposition of these 

various techniques is not given here, as all three would require a lot of space. However, the 

interested reader can find a description and discussion about the algorithms mentioned 

above in (Kecman, Huang, and Vogt, 2004; Vogt and Kecman, 2004). The Vogt and 

Kecman’s chapter discusses the application of an active set algorithm in solving small to 

medium sized QP problems. For such data sets and when the high precision is required the 

active set approach in solving QP problems seems to be superior to other approaches (no-

tably the interior point methods and SMO algorithm). The Kecman, Huang, and Vogt’s 

chapter introduces the efficient iterative single data algorithm (ISDA) for solving huge 

data sets (say more than 100,000 or 500,000 or over 1 million training data pairs). It seems 

that ISDA is the fastest algorithm at the moment for such large data sets still ensuring the 

convergence to the global minimum (see the comparisons with SMO in (Kecman, Huang 

and Vogt, 2004)). This means that the ISDA provides the exact, and not the approximate, 

solution to original dual problem. 
 

Let us conclude the presentation of SVMs part by summarizing the basic constructive steps 

that lead to the SV machine.  
 

A training and design of a support vector machine is an iterative algorithm and it involves 

the following steps: 
 

 

a) define your problem as the classification or as the regression one, 

b) preprocess your input data: select the most relevant features, scale the data between 

[-1, 1], or to the ones having zero mean and variances equal to one, check for possi-

ble outliers (strange data points), 

c) select the kernel function that determines the hypothesis space of the decision and 

regression function in the classification and regression problems respectively, 

d) select the ‘shape’, i.e., ‘smoothing’ parameter of the kernel function (for example, 

polynomial degree for polynomials and variances of the Gaussian RBF kernels re-

spectively), 

e) choose the penalty factor C and, in the regression, select the desired accuracy by de-

fining the insensitivity zone � too, 

f) solve the QP problem in l and 2l variables in the case of classification and regression 

problems respectively, 

g) validate the model obtained on some previously, during the training, unseen test data, 

and if not pleased iterate between steps d (or, eventually c) and g. 
 

 

The optimizing part f) is computationally extremely demanding. First, the Hessian matrix 

H scales with the size of a data set - it is an (l, l) and an (2l, 2l) matrix in classification and 
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regression respectively. Second, unlike in classic original QP problems H is very dense 

matrix and it is usually badly conditioned requiring a regularization before any numeric 

operation. Regularization means an addition of a small number to the diagonal elements of 

H. Luckily, there are many reliable and fast QP solvers. A simple search on an internet 

will reveal many of them. Particularly, in addition to the classic ones such as MINOS or 

LOQO for example, there are many more free QP solvers designed specially for the SVMs. 

The most popular ones are - the LIBSVM, SVMlight, SVM Torch, mySVM and SVM Fu. 

All of them can be downloaded from their corresponding sites. Good educational software 

in matlab named LEARNSC, with a very good graphic presentations of all relevant objects 

in a SVM modeling, can be downloaded from the author’s book site www.support-vector.ws 

too.  
 

Finally we mention that there are many alternative formulations and approaches to the QP 

based SVMs described above. Notably, they are the linear programming SVMs (Man-

gasarian, 1965; Frieß and Harrison, 1998; Smola, et al, 1998; Hadzic and Kecman, 1999; 

Kecman and Hadzic, 2000; Kecman, 2001; Kecman, Arthanari, Hadzic, 2001), �-SVMs 

(Schölkopf and Smola, 2002) and least squares support vector machines (Suykens et al, 

2002). Their description is far beyond this report and the curious readers are referred to 

references given above.  

 

Appendix 

L2 Support Vector Machines Models Derivation 

While introducing the soft SVMs by allowing some unavoidable errors and, at the same 

time, while trying to minimize the distances of the erroneous data points to the margin, or 

to the tube in the regression problems, we have augmented the cost 0.5wTw by the term 

 !*

1

l k k
i ii

� �
�

��  as the measure of these distances. Obviously, by using k = 2 we are pun-

ishing more strongly the far away points, than by using k = 1. There is a natural question 

then – what choice might be better in application. The experimental results (Abe, 2004) as 

well as the theoretically oriented papers (Bartlett and Tewari, 2004; Steinwart, 2003) point 

to the two interesting characteristics of the L1 and L2 SVMs. At this point, it is hard to say 

about some particular advantages. By far, L1 is more popular and used model. It seems 

that this is a consequence of the fact that L1 SVM produces sparser models (less SVs for a 

given data). Sparseness is but one of the nice properties of kernel machines. The other nice 

property is a performance on a real data set and a capacity of SVMs to provide good esti-

mation of either unknown decision functions or the regression ones. In classification, we 
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talk about the possibility to estimate the conditional probability of the class label. For this 

task, it seems that the L2 SVMs may be better. A general facts are that the L1-SVMs can 

be expected to produce sparse solutions and that L2-SVMs will typically not produce 

sparse solutions, but may be better in estimating conditional probabilities. Thus, it may be 

interesting to investigate the relationship between these two properties. Two nice theoreti-

cal papers discussing the issues of sparseness and its trade-off for a good prediction per-

formance are mentioned above. We can’t go into these subtleties here. Instead, we provide 

to the reader the derivation of the L2 SVMs model, and we hope the models presented here 

may help the reader in his/hers own search for better SVMs model.  
 

Below we present the derivation of the L2 soft NL classifier given by (32) and (33) follow-

ing by the derivation of the L2 soft NL regressor. Both derivations are performed in the 

feature space F. Thus the input vector to the SVM is the �(x) vector. All the results are 

valid for a linear model too (where we work in the original input space) by replacing �(x) 

by x. 

 

L2 Soft Margin Classifier 

Now, we start from the equa tion (24) but instead of a linear distance i�  we work with 

a quadratic one 2
i� . Thus the task is to 

 

minimize    
1

2
wTw + 

2

C 2

1
i

l

i

�
�

� , (A24a) 

subject to 

yi[w
T�(xi) + b] � 1 - �i,  i = 1, l, �i � 0, (A24b) 

i.e., subject to 

wTxi + b � +1 - �i, for yi = +1, �i � 0, (A24c) 

wTxi + b � -1 + �i, for yi = -1, �i � 0,. (A24d) 
 

Now, both the w and the �(x) are the f-dimensional vectors. Note that the dimensionality f 

can also be infinite and this happens very often (e.g., when the Gaussian kernels are used). 

Again, the solution to the quadratic programming problem (A24) is given by the saddle 

point of the primal Lagrangian Lp(w, b, �, �,) shown below 

 

Lp(w, b, �, �) = 2

1

1
( )

2 2

l
T

i
i

C
�

�

� ��w w
1

{ [ ] 1 }
l

T
i i i i

i

y b� �
�

� � �� w x ,  (A25) 

 

Note that the Lagrange multiplier � associated with � is missing here. It vanishes by com-

bining (29b) and (28) which is now equal to i i iC� 	 �� � . Again, we should find an opti-
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mal saddle point (wo, bo, �o, �o) because the Lagrangian Lp has to be minimized with re-

spect to w, b and �, and maximized with respect to nonnegative �i. And yet again, we con-

sider a solution in a dual space as given below by using 
 

- standard conditions for an optimum of a constrained function 

 

1

0, i.e., ( )
l

o i i i
io

L
y�

�

�
� �

� �w �
w

, (A26) 

1

0, i.e., 0
l

i i
io

L
y

b
�

�

�
� �

� � , (A27) 

0, i.e., 0,i i
io

L
C� �

�
�

� � �
�

, (A28) 

- and the KKT complementarity conditions below,  

 

�io{yi[w
T ( )i�  + b]-1 + �i}= 0, i.e., 

�io{yi 1
( , )

l

jo j j i oj
y k b�

�

 ��� �� x x  - 1 + �i}= 0  i = 1, l. 
(A29) 

 

A substitution of (A26) and (A28) into the Lp leads to the search for a maximum of a dual 

Lagrangian  

Ld(�) = 
1 , 1

1
( , )

2

l l
ij

i i j i j i j
i i j

y y k
C



� � �

� �

� �
� �� �

� �
� � x x , (A30) 

subject to 

�i � 0, i = 1, l, (A31a) 

and under the equality constraints 

1

0
l

i i
i

y�
�

�� , (A31b) 

 

where, ij = 1 for i = j, and it is zero otherwise. There are three tiny differences in respect 

to the most standard L1 SVM. First, in a Hessian matrix, a term 1/ C  is added to its diago-

nal elements which ensures positive definiteness of H and stabilizes the solution. Second, 

there is no upper bound on �i and the only requirement is �i to be non-negative. Third, 

there are no longer complementarity constraints (29b),  (C - �i)�i = 0. 

 

L2 Soft Regressor 

An entirely similar procedure leads to the soft L2 SVM regressors.  We start from the re-

formulated equation (46) as given below 
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 !*
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1
|| ||

2
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i ii i
R C

� �
� �

� �
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� �w

w , (A46) 

 

and after an introduction of the Lagrange multipliers �i or �i
* we change to the uncon-

strained primal Lagrangian Lp as given below, 
 

* 2 *2*

1

1
( , , , , , ) ( )

2 2

lT
p i i i i i ii

C
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T * T *
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+ - -

l l

i i i i i i i ii i
b y y b� � � � � �

� �

 �  �� � � � � � �� � � �� �w x w x . 

(A47) 

 

Again, the introduction of the dual variables 	 and 	 i
* associated with �i and �i

* is not 

needed for the L2 SVM regression models. At the optimal solution the partial derivatives 

of Lp in respect to primal variables vanish. Namely,  
 

* *
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1
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Substituting the KKT above into the primal Lp given in (A47), we arrive at the problem of 

the maximization of a dual variables Lagrangian Ld(�, �*) below, 
 

* * * * *
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subject to constraints 

 !* *

1 1 1
or  0

l l l

i i i ii i i
� � � �

� � �

� � �� � �  (A53a) 

0 �  �i    i = 1, l, (A53b) 

0 �   �i
*   i = 1, l. (A53c) 

 

At the optimal solution the following KKT complementarity conditions must be fulfilled  
 

 !T + 0i i i ib y� � �� � � �w x , (A54) 

 !* T *- - 0i i i ib y� � �� � � �w x , (A55) 
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�i�i
* = 0, * 0i i� � �    i = 1, l.. (A56) 

 

Note that for the L2 SVM regression models the complementarity conditions (58) and (59) 

are eliminated here. After the calculation of Lagrange multipliers �i and �i
*, and by using 

(A48) we can find an optimal (desired) weight vector of the L2 regression hyperplane in a 

feature space as 
 

wo = *

1
( ) ( )

l

i i ii
� �

�

�� � . (A57) 

 

The best L2 regression hyperplane obtained is given by 
 

 

F(x, w) = wo
T (x) + b = *

1
( ) ( , )

l

i i ii
k� �

�

�� x x + b. (A58) 

 

Same as for the L1 SVM classifiers, there are three tiny differences in respect to the most 

standard L1 SVM regressors. First, in a Hessian matrix, a term 1/ C  is added to its diago-

nal elements which ensures positive definiteness of H and stabilizes the solution. Second, 

there is no upper bound on �i and the only requirement is �i to be non-negative. Third, 

there are no longer complementarity constraints (58) and (59), namely the conditions (C - 

�i)�i = 0 and (C - �i
*)�i

* = 0 are missing in the L2 SVM regressors. 
 

Finally, same as for the L1 SVMs, note that the NL decision functions here depend neither 

upon w nor on the true mapping (x). The last remark is same for all NL SVMs models 

shown here and it reminds that we neither have to express, nor to know the weight vector 

w and the true mapping (x) et al. The complete data modeling job will be done by find-

ing the dual variables (*)
i� and the kernel values ( , )i jk x x  only. 

 

With these remarks we left the SVMs models developed and presented in the report to both 

the mind and the hand of a curious reader. However, we are aware that the most promising 

situation would be if the kernel models reside in the heart of the reader. We wish and hope 

that this booklet paved, at least, a part of the way to this veiled place. 
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